Amanda L. Uowolo

Learn More
Invasive species are among the greatest threats to global biodiversity. Unfortunately, meaningful control of invasive species is often difficult. Here, we present results concerning the effects of invasion by a non-native, N2-fixing tree, Falcataria moluccana, on native-dominated forests of American Samoa and the response of invaded forests to its removal.(More)
The conservation of species at risk of extinction requires data to support decisions at landscape to regional scales. There is a need for information that can assist with locating suitable habitats in fragmented and degraded landscapes to aid the reintroduction of at-risk plant species. In addition, desiccation and water stress can be significant barriers(More)
Invasive species have the capacity to substantially alter soil processes, including rates of litter decomposition. Currently, the few remaining native-dominated lowland wet forests in Hawai’i are being invaded by Falcataria moluccana, a large, fast-growing, N2-fixing tree. In this study, we sought to determine the extent to which Falcataria invasion alters(More)
While invasive species may be visible indicators of plant community degradation, they may not constitute the only, or even the primary, limitation to stand regeneration. We used seed-augmentation and grass-removal experiments under different canopy conditions to assess the relative importance of dispersal limitation, resource availability, and competition(More)
Tropical forests are important storehouses of carbon and biodiversity. In isolated island ecosystems such as the Hawaiian Islands, relative dominance of native and nonnative tree species may influence patterns of forest carbon stocks and biodiversity. We determined aboveground carbon density (ACD) across a matrix of lava flows differing in age, texture, and(More)
  • 1