Amanda J Meade

Learn More
Neuronal cell death caused by glutamate excitotoxicity is prevalent in various neurological disorders and has been associated with the transcriptional activation of activator protein-1 (AP-1). In this study, we tested 19 recently isolated AP-1 inhibitory peptides, fused to the cell penetrating peptide TAT, for their efficacy in preventing cell death in(More)
This study has assessed the neuroprotective efficacy of five AP-1 inhibitory peptides in an in vitro excitotoxicity model. The five AP-1 inhibitory peptides and controls of the JNK inhibitor peptide (JNKI-1D-TAT) and TAT cell-penetrating-peptide were administered to primary cortical neuronal cultures prior to kainic acid exposure. All five AP-1 inhibitory(More)
Using 96 well microtitre plate sized glass wells we have established and characterised two in vitro ischemia (oxygen-glucose deprivation) models that induce acute or delayed neuronal cell death. In vitro ischemia was induced by washing cortical neuronal cultures with a balanced salt solution either with (acute model) or without (delayed model) 25mM(More)
In this study, we have assessed the ability of two TAT-fused peptides PYC36D-TAT and JNKI-1D-TAT (JNKI-1 or XG-102), which respectively inhibit jun proto-oncogene (c-Jun) and c-Jun N-terminal kinase (JNK) activation, to reduce infarct volume and improve functional outcome (adhesive tape removal) after transient focal cerebral ischemia in Spontaneously(More)
  • 1