Amanda J Guise

Learn More
Histone deacetylases (HDACs) are a diverse family of essential transcriptional regulatory enzymes, that function through the spatial and temporal recruitment of protein complexes. As the composition and regulation of HDAC complexes are only partially characterized, we built the first global protein interaction network for all 11 human HDACs in T cells.(More)
Replicative DNA helicases expose the two strands of the double helix to the replication apparatus, but accessory helicases are often needed to help forks move past naturally occurring hard-to-replicate sites, such as tightly bound proteins, RNA/DNA hybrids, and DNA secondary structures. Although the Schizosaccharomyces pombe 5'-to-3' DNA helicase Pfh1 is(More)
Class IIa histone deacetylases (HDACs4, -5, -7, and -9) modulate the physiology of the human cardiovascular, musculoskeletal, nervous, and immune systems. The regulatory capacity of this family of enzymes stems from their ability to shuttle between nuclear and cytoplasmic compartments in response to signal-driven post-translational modification. Here, we(More)
Histone deacetylase 5 (HDAC5), a class IIa deacetylase, is a prominent regulator of cellular and epigenetic processes that underlie the progression of human disease, ranging from cardiac hypertrophy to cancer. Although it is established that phosphorylation mediates 14-3-3 protein binding and provides the essential link between HDAC5 nucleo-cytoplasmic(More)
Emerging evidence highlights a critical role for protein acetylation during herpesvirus infection. As prominent modulators of protein acetylation, histone deacetylases (HDACs) are essential transcriptional and epigenetic regulators. Not surprisingly, viruses have evolved a wide array of mechanisms to subvert HDAC functions. Here, we review the mechanisms(More)
Class IIa histone deacetylases (HDACs 4/5/7/9) are transcriptional regulators with critical roles in cardiac disease and cancer. HDAC inhibitors are promising anticancer agents, and although they are known to disrupt mitotic progression, the underlying mechanisms of mitotic regulation by HDACs are not fully understood. Here we provide the first(More)
Almost 400 genes affect yeast telomere length, including Est1, which is critical for recruitment and activation of telomerase. Here we use mass spectrometry to identify novel telomerase regulators by their co-purification with the telomerase holoenzyme. In addition to all known subunits, over 100 proteins are telomerase associated, including all three(More)
Class IIa histone deacetylases (HDACs) are critical transcriptional regulators, shuttling between nuclear and cytoplasmic cellular compartments. Within the nucleus, these HDACs repress transcription as components of multiprotein complexes, such as the nuclear corepressor and beclin-6 corepressor (BCoR) complexes. Cytoplasmic relocalization relieves this(More)
As a member of the class IIa family of histone deacetylases, the histone deacetylase 5 (HDAC5) is known to undergo nuclear-cytoplasmic shuttling and to be a critical transcriptional regulator. Its misregulation has been linked to prominent human diseases, including cardiac diseases and tumorigenesis. In this chapter, we describe several experimental methods(More)
In biological systems, proteins catalyze the fundamental reactions that underlie all cellular functions, including metabolic processes and cell survival and death pathways. These biochemical reactions are rarely accomplished alone. Rather, they involve a concerted effect from many proteins that may operate in a directed signaling pathway and/or may(More)