Learn More
BACKGROUND The embryo sac contains the haploid maternal cell types necessary for double fertilization and subsequent seed development in plants. Large-scale identification of genes expressed in the embryo sac remains cumbersome because of its inherent microscopic and inaccessible nature. We used genetic subtraction and comparative profiling by microarray(More)
Unlike animals that produce gametes upon differentiation of meiotic products, plants develop haploid male and female gametophytes that differentiate gametes such as sperm, egg and central cells, and accessory cells [1, 2]. Both gametophytes participate in double fertilization and give rise to the next sporophytic generation. Little is known about the(More)
The plant life cycle alternates between two distinct multi-cellular generations, the reduced gametophytes and the dominant sporophyte. Little is known about how generation-specific cell fate, differentiation, and development are controlled by the core regulators of the cell cycle. In Arabidopsis, RETINOBLASTOMA RELATED (RBR), an evolutionarily ancient cell(More)
Embryogenesis is a critical stage during the plant life cycle in which a unicellular zygote develops into a multicellular organism. Co-ordinated gene expression is thus necessary for proper embryo development. Polycomb and Trithorax group genes are members of evolutionarily conserved machinery that maintains the correct expression patterns of key(More)
Molecular dissection of apomixis - an asexual reproductive mode - is anticipated to solve the enigma of loss of meiotic sex, and to help fixing elite agronomic traits. The Brassicaceae genus Boechera comprises of both sexual and apomictic species, permitting comparative analyses of meiotic circumvention (apomeiosis) and parthenogenesis. Whereas previous(More)
  • 1