Amélie Piton

Learn More
Most human hepatocyte cell lines lack a substantial set of liver-specific functions, especially major cytochrome P450 (P450)-related enzyme activities, making them unrepresentative of in vivo hepatocytes. We have used the HepaRG cells, derived from a human hepatocellular carcinoma, which exhibit a high differentiation pattern after 2 weeks at confluency to(More)
A number of studies have confirmed that genetic factors play an important role in autism spectrum disorder (ASD). More recently de novo mutations in the SHANK3 gene, a synaptic scaffolding protein, have been associated with the ASD phenotype. As part of our gene discovery strategy, we sequenced the SHANK3 gene in a cohort of 427 ASD subjects and 190(More)
Heterozygous mutations in FOXP2, which encodes a forkhead transcription factor, have been shown to cause developmental verbal dyspraxia and language impairment. FOXP2 and its closest homolog, FOXP1, are coexpressed in brain regions that are important for language and cooperatively regulate developmental processes, raising the possibility that FOXP1 may also(More)
Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95(More)
BACKGROUND Little is known about the genetics of nonsyndromic intellectual disability (NSID). Recently, we reported de novo truncating mutations in the SYNGAP1 gene of 3 of 94 NSID cases, suggesting that its disruption represents a common cause of autosomal dominant NSID. METHODS To further explore the involvement of SYNGAP1 in NSID, we sequenced its(More)
The role of de novo mutations (DNMs) in common diseases remains largely unknown. Nonetheless, the rate of de novo deleterious mutations and the strength of selection against de novo mutations are critical to understanding the genetic architecture of a disease. Discovery of high-impact DNMs requires substantial high-resolution interrogation of partial or(More)
In a systematic sequencing screen of synaptic genes on the X chromosome, we have identified an autistic female without mental retardation (MR) who carries a de novo frameshift Ile367SerfsX6 mutation in Interleukin-1 Receptor Accessory Protein-Like 1 (IL1RAPL1), a gene implicated in calcium-regulated vesicle release and dendrite differentiation. We showed(More)
Because of the unbalanced sex ratio (1.3-1.4 to 1) observed in intellectual disability (ID) and the identification of large ID-affected families showing X-linked segregation, much attention has been focused on the genetics of X-linked ID (XLID). Mutations causing monogenic XLID have now been reported in over 100 genes, most of which are commonly included in(More)
Autism is a common neurodevelopmental disorder with a complex mode of inheritance. It is one of the most highly heritable of the complex disorders, although the underlying genetic factors remain largely unknown. Here, we report mutations in the X-chromosome PTCHD1 (patched-related) gene in seven families with autism spectrum disorder (ASD) and in three(More)
Several genes predisposing to autism spectrum disorders (ASDs) with or without epilepsy have been identified, many of which are implicated in synaptic function. Here we report a Q555X mutation in synapsin 1 (SYN1), an X-linked gene encoding for a neuron-specific phosphoprotein implicated in the regulation of neurotransmitter release and synaptogenesis. This(More)