Learn More
High-power lasers that fit into a university-scale laboratory can now reach focused intensities of more than 10(19) W cm(-2) at high repetition rates. Such lasers are capable of producing beams of energetic electrons, protons and gamma-rays. Relativistic electrons are generated through the breaking of large-amplitude relativistic plasma waves created in the(More)
Laser-plasma wakefield-based electron accelerators are expected to deliver ultrashort electron bunches with unprecedented peak currents. However, their actual pulse duration has never been directly measured in a single-shot experiment. We present measurements of the ultrashort duration of such electron bunches by means of THz time-domain interferometry.(More)
We report the first experimental observation of a long-wavelength hosing modulation of a high-intensity laser pulse. Side-view images of the scattered optical radiation at the fundamental wavelength of the laser reveal a transverse oscillation of the laser pulse during its propagation through underdense plasma. The wavelength of the oscillation λ(hosing)(More)
Concentration modulation is demonstrated to be a technique capable of markedly extending sensitivity limits in absorption spectroscopy. The gain generated relates in such a manner to sample transmittance that for the first reported time direct spectroscopic concentration measurements become possible. When concentration modulation is used with picosecond(More)
This paper outlines the approach taken to iteratively evaluate a set of VR/AR (virtual reality / augmented reality) applications for five different manual-work applications - terrestrial spacecraft assembly, assembly-line design, remote maintenance of trains, maintenance of nuclear reactors, and large-machine assembly process design - and examines the(More)
UNLABELLED In the last decade, there has been increasing pressure on developed nations to reduce their carbon emissions. Distributed micro-generation (MG) initiatives provide incentives for small-scale renewable energy generation, particularly by residential home-owners. This paper investigates the existing knowledge base to consider if living in a property(More)
The interaction of an intense laser field with a beam of atomic ions has been investigated experimentally for the first time. The ionization dynamics of Ar+ ions and Ar neutrals in a 60 fs, 790 nm laser pulse have been compared and contrasted at intensities up to 10(16) W cm-2. Our results show that nonsequential ionization from an Ar+ target is strongly(More)
Electron-ion recombination in a laser-induced electron recollision is of fundamental importance as the underlying mechanism responsible for the generation of high-harmonic radiation and hence for the production of attosecond pulse trains in the extreme ultraviolet and soft x-ray spectral regions. By using an ion beam target, remotely prepared to be(More)
The multiphoton ionization of H2 has been studied using laser pulses of 266 nm wavelength, 250 fs duration, and 5x10(13) W/cm(2) peak intensity. Dissociation of H2(+) via one-photon absorption proceeds through two channels with markedly different proton angular distributions. The lower-energy channel (2.6 eV kinetic energy release) is produced in the bond(More)