Alyson J. Conover

Learn More
RecA is a key protein in homologous recombination. During recombination, one single-stranded DNA (ssDNA) bound to site I in RecA exchanges Watson-Crick pairing with a sequence-matched ssDNA that was part of a double-stranded DNA molecule (dsDNA) bound to site II in RecA. After strand exchange, heteroduplex dsDNA is bound to site I. In vivo, direct(More)
It has been suggested that the structure that results when double-stranded DNA (dsDNA) is pulled from the 3'3' ends differs from that which results when it is pulled from the 5'5' ends. In this work, we demonstrate, using lambda phage dsDNA, that the overstretched states do indeed show different properties, suggesting that they correspond to different(More)
A RecA-single-stranded DNA (RecA-ssDNA) filament searches a genome for sequence homology by rapidly binding and unbinding double-stranded DNA (dsDNA) until homology is found. We demonstrate that pulling on the opposite termini (3' and 5') of one of the two DNA strands in a dsDNA molecule stabilizes the normally unstable binding of that dsDNA to(More)
We measure the constant force required to melt double-stranded (ds) DNA as a function of length for lengths from 12 to 100,000 base pairs, where the force is applied to the 3'3' or 5'5' ends of the dsDNA. Molecules with 32 base pairs or fewer melt before overstretching. For these short molecules, the melting force is independent of the ends to which the(More)
The RecA protein is an ATPase that mediates recombination via strand exchange. In strand exchange a single-stranded DNA (ssDNA) bound to RecA binding site I in a RecA/ssDNA filament pairs with one strand of a double-stranded DNA (dsDNA) and forms heteroduplex dsDNA in site I if homology is encountered. Long sequences are exchanged in a dynamic process in(More)
  • 1