Learn More
Our goal was to understand how patterns of excitation and inhibition, interacting across arrays of ganglion cells in space and time, generate the spiking output pattern for each ganglion cell type. We presented the retina with a 1-s flashed square, 600 microm on a side, and measured patterns of excitation and inhibition over an 1,800-microm-wide region(More)
Retinal bipolar cells can be divided into on and off types based on the polarity of their response to light. Bipolar activity is further shaped by inhibitory inputs, characterized here by the events that occur immediately after the onset of a light step: 1) in most off bipolar cells, excitatory current decreased, whereas inhibitory current increased. These(More)
In the mammalian retina, complementary ON and OFF visual streams are formed at the bipolar cell dendrites, then carried to amacrine and ganglion cells via nonlinear excitatory synapses from bipolar cells. Bipolar, amacrine and ganglion cells also receive a nonlinear inhibitory input from amacrine cells. The most common form of such inhibition crosses over(More)
We introduce a fast method, the &#x201C;in-crowd&#x201D; algorithm, for finding the exact solution to basis pursuit denoising problems. The in-crowd algorithm discovers a sequence of subspaces guaranteed to arrive at the support set of the final solution of <i>l</i><sub>1</sub> -regularized least squares problems. We provide theorems showing that the(More)
We propose a flexible light field camera architecture that is at the convergence of optics, sensor electronics, and applied mathematics. Through the co-design of a sensor that comprises tailored, Angle Sensitive Pixels and advanced reconstruction algorithms, we show that-contrary to light field cameras today-our system can use the same measurements captured(More)