Learn More
The immunosuppressant rapamycin inhibits Tor1p and Tor2p (target of rapamycin proteins), ultimately resulting in cellular responses characteristic of nutrient deprivation through a mechanism involving translational arrest. We measured the immediate transcriptional response of yeast grown in rich media and treated with rapamycin to investigate the direct(More)
Malignant transformation, driven by gain-of-function mutations in oncogenes and loss-of-function mutations in tumour suppressor genes, results in cell deregulation that is frequently associated with enhanced cellular stress (for example, oxidative, replicative, metabolic and proteotoxic stress, and DNA damage). Adaptation to this stress phenotype is(More)
BACKGROUND In all organisms, nutrients are primary regulators of signaling pathways that control transcription. In Saccharomyces cerevisiae, the Tor proteins regulate the transcription of genes sensitive to the quality of available nitrogen and carbon sources. Formation of a ternary complex of the immunosuppressant rapamycin, its immunophilin receptor Fpr1p(More)
UNLABELLED Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and(More)
Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosis-inducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a(More)
Small molecules that alter protein function provide a means to modulate biological networks with temporal resolution. Here we demonstrate a potentially general and scalable method of identifying such molecules by application to a particular protein, Ure2p, which represses the transcription factors Gln3p and Nil1p. By probing a high-density microarray of(More)
Signaling networks that promote cell growth are frequently dysregulated in cancer. One regulatory network, which converges on effectors such as 4EBP1 and S6K1, leads to growth by promoting protein synthesis. Here, we discuss how this network is regulated by both extracellular signals, such as growth factors, and intracellular signals, such as nutrients. We(More)
Piperlongumine is a naturally occurring small molecule recently identified to be toxic selectively to cancer cells in vitro and in vivo. This compound was found to elevate cellular levels of reactive oxygen species (ROS) selectively in cancer cell lines. The synthesis of 80 piperlongumine analogs has revealed structural modifications that retain, enhance,(More)
Treating yeast cells with rapamycin, a small molecule that inhibits the TOR proteins, leads to the repression of many genes. Consistent with prior studies, we find that RPD3, which encodes a histone deacetylase (HDAC), is required for repression upon rapamycin treatment. To elucidate the mechanism underlying RPD3-mediated repression, we screened all(More)
The target of rapamycin (Tor) proteins sense nutrients and control transcription and translation relevant to cell growth. Treating cells with the immunosuppressant rapamycin leads to the intracellular formation of an Fpr1p-rapamycin-Tor ternary complex that in turn leads to translational down-regulation. A more rapid effect is a rich transcriptional(More)