Alvin T. Yeh

Learn More
Clinical procedures wherein supraphysiologic temperatures must be achieved in deep layers of tissue via light are often compromised by optical scattering and absorption. Optical clearing of tissue superficial to the target improves the efficacy of such procedures. Glycerol is an attractive chemical agent for achieving dramatic reductions in tissue(More)
A combined nonlinear optical microscopy (NLOM) and optical coherence microscopy (OCM) imaging system has been assembled in order to simultaneously capture co-registered volumetric images of corneal morphology and biochemistry. Tracking of cell nuclei visible in the OCM volume enabled the calculation of strain depth profile in response to changes in(More)
During photodynamic therapy (PDT) both normal and pathological brain tissue, in close proximity to the light source, can experience significant temperature increases. The purpose of this study was to investigate the anti-tumor effects of concurrent 5-aminolevulinic acid (ALA)-mediated PDT and hyperthermia (HT) in human and rat glioma spheroids. Human or rat(More)
Understanding relationships between mechanical stimuli and cellular responses require measurements of evolving tissue structure and mechanical properties. We developed a 3D tissue bioreactor that couples to both the stage of a custom multimodal microscopy system and a biaxial mechanical testing platform. Time dependent changes in microstructure and(More)
During embryogenesis, presumptive brain compartments are patterned by dynamic networks of gene expression. The spatiotemporal dynamics of these networks, however, have not been characterized with sufficient resolution for us to understand the regulatory logic resulting in morphogenetic cellular behaviors that give the brain its shape. We have developed a(More)
Research and Teaching: My research is focused on the development of novel microscopy based on broadband, ultrashort laser pulses for intravital study of biological processes and responses in 3D tissue systems. Our efforts have focused primarily on development of nonlinear optical microscopy (NLOM), utilizing femtosecond (fs) pulses an order of magnitude(More)
  • 1