Alvin R. Lebeck

Learn More
We have developed a new technique for evaluating cache coherent, shared-memory computers. The Wisconsin Wind Tunnel (WWT) runs a parallel shared-memory program on a parallel computer (CM-5) and uses execution-driven, distributed, discrete-event simulation to accurately calculate program execution time. WWT is a virtual prototype that exploits similarities(More)
Energy consumption has recently been widely recognized as a major challenge of computer systems design. This paper explores how to support energy as a first-class operating system resource. Energy, because of its global system nature, presents challenges beyond those of conventional resource management. To meet these challenges we propose the Currentcy(More)
This paper discusses implementations of fine-grain memory access control, which selectively restricts reads and writes to cache-block-sized memory regions. Fine-grain access control forms the basis of efficient cache-coherent shared memory. This paper focuses on low-cost implementations that require little or no additional hardware. These techniques permit(More)
This paper introduces dynamic self-invalidation (DSI), a new technique for reducing cache coherence overhead in shared-memory multiprocessors. DSI eliminates invalidation messages by having a processor automatically invalidate its local copy of a cache block before a conflicting access by another processor. Eliminating invalidation overhead is particularly(More)
This paper provides quantitative measurements of load latency tolerance in a dynamically scheduled processor. To determine the latency tolerance of each memory load operation, our simulations use flexible load completion policies instead of a fixed memory hierarchy that dictates the latency. Although our policies delay load completion as long as possible,(More)
We develop from first principles an exact model of the behavior of loop nests executing in a memory hicrarchy, by using a nontraditional classification of misses that has the key property of composability. We use Presburger formulas to express various kinds of misses as well as the state of the cache at the end of the loop nest. We use existing tools to(More)
Matrix multiplication is an important kernel in linear algebra algorithms, and the performance of both serial and parallel implementations is highly dependent on the memory system behavior. Unfortunately, due to false sharing and cache conflicts, traditional column-major or row-major array layouts incur high variability in memory system performance as(More)