Learn More
Improvements in real-time Doppler optical coherence tomography (DOCT), acquiring up to 32 frames per second at 250 x 512 pixels per image, are reported using signal processing techniques commonly employed in Doppler ultrasound imaging. The ability to measure a wide range of flow velocities, ranging from less than 20 microm/s to more than 10 cm/s, is(More)
Significant improvements are reported in the measurable velocity range and tissue motion artefact rejection of a phase-resolved optical coherence tomography and optical Doppler tomography system. Phase information derived from an in-phase and quadrature demodulator is used to estimate the mean blood flow velocity by the Kasai autocorrelation algorithm. A(More)
In ad hoc wireless networks, nodes communicate through a cooperative network in which other nodes function as relays. Since resources are frequently constrained, incentives must be provided to entice nodes to relay. The correct amount of incentive is essential to the efficient and optimal operation of the network. Excessive incentive results in widespread(More)
We previously reported a Doppler optical coherence tomography (DOCT) system design [1] for high-speed imaging with wide velocity dynamic range (up to 28.5 dB when acquiring 8 frames per second), operating at 1.3 m with a coherence length of 13.5 m. Using a developmental biology model (Xenopus laevis), here we test the DOCT system's ability to image cardiac(More)
  • 1