Learn More
Alzheimer's disease (AD) is an age-related neurodegenerative disorder associated with progressive memory loss, severe dementia, and hallmark neuropathological markers, such as deposition of amyloid-β (Aβ) peptides in senile plaques and accumulation of hyperphosphorylated tau proteins in neurofibrillary tangles. Recent evidence obtained from transgenic mouse(More)
Neuromodulatory input, acting on G protein-coupled receptors, is essential for the induction of experience-dependent cortical plasticity. Here we report that G-coupled receptors in layer II/III of visual cortex control the polarity of synaptic plasticity through a pull-push regulation of LTP and LTD. In slices, receptors coupled to Gs promote LTP while(More)
The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca(2+) concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family,(More)
The impact of aging on cognitive capabilities varies among individuals ranging from significant impairment to preservation of function on par with younger adults. Research on the neural basis for age-related memory decline has focused primarily on the CA1 region of the hippocampus. However, recent studies in elderly human and rodents indicate that(More)
Crypt olfactory receptor neurons (ORNs) are a third type of chemosensory neuron along with ciliated and microvillous ORNs in the olfactory epithelium of fishes, but their functional role is still unknown. To investigate their odorant response properties and possible transduction pathways, we recorded crypt ORN activity with calcium imaging and the patch(More)
Alzheimer's disease (AD) is the most common form of dementia with progressive deterioration of memory and cognition. Complaints related to vision are common among AD patients. Several changes in the retina, lens, and in the vasculature have been noted in the AD eye that may be the cause of visual symptoms experienced by the AD patient. Anatomical changes(More)
Neurodegenerative disorders constitute a growing concern worldwide. Their incidence has increased steadily, in particular among the elderly, a high-risk population that is becoming an important segment of society. Neurodegenerative mechanisms underlie many ailments such as Parkinson's disease, Huntington's disease, Alzheimer's disease (AD) and Down syndrome(More)
Contextual memory formation relies on the induction of new genes in the hippocampus. A polymorphism in the promoter of the transcription factor XBP1 was identified as a risk factor for Alzheimer's disease and bipolar disorders. XBP1 is a major regulator of the unfolded protein response (UPR), mediating adaptation to endoplasmic reticulum (ER) stress. Using(More)
New studies show that the retina also undergoes pathological changes during the development of Alzheimer's disease (AD). While transgenic mouse models used in these previous studies have offered insight into this phenomenon, they do not model human sporadic AD, which is the most common form. Recently, the Octodon degus has been established as a sporadic(More)
The use of transgenic models for the study of neurodegenerative diseases has made valuable contributions to the field. However, some important limitations, including protein overexpression and general systemic compensation for the missing genes, has caused researchers to seek natural models that show the main biomarkers of neurodegenerative diseases during(More)