Learn More
Circular double-stranded replication intermediates were identified in low-molecular-weight DNA of cells of the avian leukemia virus-induced lymphoblastoid cell line 1104-X-5 infected with chicken anemia virus (CAV). To characterize the genome of CAV, we cloned linearized CAV DNA into the vector pIC20H. Transfection of the circularized cloned insert into(More)
The transcriptional coactivator p300 regulates transcription by binding to proteins involved in transcription and by acetylating histones and other proteins. These transcriptional effects are mainly at promoter and enhancer elements. Regulation of transcription also occurs through scaffold/matrix attachment regions (S/MARs), the chromatin regions that bind(More)
Many neurons in the developing nervous system undergo programmed cell death, or apoptosis. However, the molecular mechanism underlying this phenomenon is largely unknown. In the present report, we present evidence that the cell cycle regulator cyclin D1 is involved in the regulation of neuronal cell death. During neuronal apoptosis, cyclin D1-dependent(More)
The adenovirus E1A proteins differentially regulate AP-1-responsive genes. Collagenase and stromelysin are repressed by E1A, whereas the expression of c-jun is elevated. Inhibition of collagenase has been found to be exerted through the consensus AP-1 binding site TGAGTCA. Here we show that the distal AP-1 binding site in the c-jun promoter, the jun2TRE(More)
The adenovirus E1A proteins activate the c-jun promoter through two Jun/ATF-binding sites, jun1 and jun2. P300, a transcriptional coactivator of several AP1 and ATF transcription factors has been postulated to play a role in this activation. Here, we present evidence that p300 can control c-jun transcription by acting as a cofactor for ATF2: (1)(More)
The adenovirus E1A protein regulates transcription of cellular genes via its interaction with the transcriptional coactivators p300/CBP. The collagenase promoter activated by the c-Jun protein is repressed by E1A. Here we show that E1A repression is specific for c-Jun, as E1A does not repress the collagenase promoter activated by the homologous(More)
Histone acetyltransferases (HATs) such as CBP and p300 are regarded as key regulators of RNA polymerase II-mediated transcription, but the critical structural features of their HAT modules remain ill defined. The HAT domains of CBP and p300 are characterized by the presence of a highly conserved putative plant homeodomain (PHD) (C4HC3) type zinc finger,(More)
Despite high levels of homology, transcription coactivators p300 and CREB binding protein (CBP) are both indispensable during embryogenesis. They are largely known to regulate the same genes. To identify genes preferentially regulated by p300 or CBP, we performed an extensive genome-wide survey using the ChIP-seq on cell-cycle synchronized cells. We found(More)
Experiments were performed in order to determine the minimal requirement for the proteins L7/L12 in polyphenylalanine synthesis and elongation factor EF-G-dependent GTP hydrolysis. Via reconstitution, ribosomal particles were prepared containing variable amounts of L7/L12. The L7/L12 content of these particles was carefully determined by the use of(More)
Studies on the molecular mechanisms underlying neuronal differentiation are frequently performed using cell lines established from neuroblastomas. In this study we have used mouse N1E-115 neuroblastoma cells that undergo neuronal differentiation in response to DMSO. During differentiation, cyclin-dependent kinase (cdk) activities decline and phosphorylation(More)