Learn More
The High Resolution Fly's Eye (HiRes) experiment has observed the Greisen-Zatsepin-Kuzmin suppression (called the GZK cutoff) with a statistical significance of five standard deviations. HiRes' measurement of the flux of ultrahigh energy cosmic rays shows a sharp suppression at an energy of 6 x 10(19) eV, consistent with the expected cutoff energy. We(More)
Aims. The BL Lac object RGB J0152+017 (z = 0.080) was predicted to be a very high-energy (VHE; > 100 GeV) γ-ray source, due to its high X-ray and radio fluxes. Our aim is to understand the radiative processes by investigating the observed emission and its production mechanism using the High Energy Stereoscopic System (H.E.S.S.) experiment. Methods. We(More)
The High Resolution Fly's Eye (HiRes) experiment has observed the GZK cutoff. HiRes' measurement of the flux of cosmic rays shows a sharp suppression at an energy of 6 × 10 19 eV, exactly the expected cutoff energy. We observe the " Ankle " of the cosmic ray spectrum as well, at an energy of 4 × 10 18 eV. We describe the experiment, data collection,(More)
We have measured the energy spectrum of ultra-high energy cosmic rays (UHECR) with the HiRes FADC detector (HiRes-2) in monocular mode. A detailed Monte Carlo simulation of the detector response to air showers has been used to calculate the energy dependent acceptance of the air fluorescence detector. The measured spectrum complements the measurement by the(More)
Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrated a correlation between the arrival directions of cosmic rays with energy above 6 x 10(19) electron volts and the positions of active galactic nuclei (AGN) lying within approximately 75 megaparsecs. We rejected the hypothesis of an isotropic distribution of these(More)
Interactions between cosmic ray protons and the photons of the cosmic microwave background radiation, as well as the expansion of the universe, cause cosmic rays to lose energy in a way that depends on the distance from the cosmic nray source to the earth. Because of this, there is a correlation between cosmic ray energies and the average redshift of their(More)
We present the results of a search for cosmic ray point sources at energies above 4.0 × 10 19 eV in the combined data sets recorded by the AGASA and HiRes stereo experiments. The analysis is based on a maximum likelihood ratio test using the probability density function for each event rather than requiring an a priori choice of a fixed angular bin size. No(More)
We discuss the rate of an elementary chemical reaction. We use the reaction path and especially its saddle point on the potential energy surface. The reaction path connects reactant and product of a reaction over the transition state (TS). Usually, the TS is assumed near or at the single saddle point of the reaction path. By means of comparison of the(More)
The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we(More)
Starburst galaxies exhibit in their central regions a highly increased rate of supernovae, the remnants of which are thought to accelerate energetic cosmic rays up to energies of approximately 10(15) electron volts. We report the detection of gamma rays--tracers of such cosmic rays--from the starburst galaxy NGC 253 using the High Energy Stereoscopic System(More)