Alper Buyuktosunoglu

Learn More
Chip-level power and thermal implications will continue to rule as one of the primary design constraints and performance limiters. The gap between average and peak power actually widens with increased levels of core integration. As such, if per-core control of power levels (modes) is possible, a global power manager should be able to dynamically set the(More)
Leakage power is a major concern in current and future microprocessor designs. In this paper, we explore the potential of architectural techniques to reduce leakage through power-gating of execution units. This paper first develops parameterized analytical equations that estimate the break-even point for application of power-gating techniques. The potential(More)
Conventional microarchitectures choose a single memory hierarchy design point targeted at the average application. In this paper, we propose a cache and TLB layout and design that leverages repeater insertion to provide dynamic low-cost configurability trading off size and speed on a per application phase basis. A novel configuration management algorithm(More)
While Processing-in-Memory has been investigated for decades, it has not been embraced commercially. A number of emerging technologies have renewed interest in this topic. In particular, the emergence of 3D stacking and the imminent release of Micron's Hybrid Memory Cube device have made it more practical to move computation near memory. However, the(More)
Energy efficiency in microarchitectures has become a necessity. Significant dynamic energy savings can be realized for adaptive storage structures such as caches, issue queues, and register files by disabling unnecessary storage resources. Prior studies have analyzed individual structures and their control. A common theme to these studies is exploration of(More)
Increasing power dissipation has become a major constraint for future performance gains in the design of microprocessors. In this paper, we present the circuit design of an issue queue for a superscalar processor that leverages transmission gate insertion to provide dynamic low-cost configurability of size and speed. A novel circuit structure dynamically(More)
Front-end instruction delivery accounts for a significant fraction of the energy consumed in a dynamic superscalar processor. The issue queue in these processors serves two crucial roles: it bridges the front and back ends of the processor and serves as the window of instructions for the out-of-order engine. A mismatch between the front end producer rate(More)
T he productivity of modern society has become inextricably linked to its ability to produce energy-efficient computing technology. Increasingly sophisticated mobile computing systems, powered for hours solely by batteries, continue to proliferate rapidly throughout society, while battery technology improves at a much slower pace. In large data centers that(More)
ABSTRACT Increasing power dissipation has become a major constraint for future performance gains in the design of microprocessors. In this paper, we present the circuit design of an issue queue for a superscalar processor that leverages transmission gate insertion to provide dynamic low-cost con gurability of size and speed. A novel circuit structure(More)