Learn More
Huntington's disease (HD) is a progressive neurodegenerative illness for which there is no effective therapy. We examined whether creatine, which may exert neuroprotective effects by increasing phosphocreatine levels or by stabilizing the mitochondrial permeability transition, has beneficial effects in a transgenic mouse model of HD (line 6/2). Dietary(More)
There is substantial evidence for bioenergetic defects in Huntington's disease (HD). Creatine administration increases brain phosphocreatine levels and it stabilizes the mitochondrial permeability transition. We examined the effects of creatine administration in a transgenic mouse model of HD produced by 82 polyglutamine repeats in a 171 amino acid(More)
Huntington's disease is a neurodegenerative illness caused by expansion of CAG repeats at the N-terminal end of the protein huntingtin. We examined longitudinal changes in brain metabolite levels using in vivo magnetic resonance spectroscopy in five different mouse models. There was a large (>50%) exponential decrease in N-acetyl aspartate (NAA) with time(More)
There is substantial evidence that bioenergetic defects and excitotoxicity may play a role in the pathogenesis of Huntington's disease (HD). Potential therapeutic strategies for neurodegenerative diseases in which there is reduced energy metabolism and NMDA-mediated excitotoxicity are the administration of the mitochondrial cofactor coenzyme Q10 and the(More)
Mitochondrial dysfunction and oxidative damage may play a role in the pathogenesis of Huntington's disease (HD). We examined concentrations of 8-hydroxy-2-deoxyguanosine (OH(8)dG), a well-established marker of oxidative damage to DNA, in a transgenic mouse model of HD (R6/2). Increased concentrations of OH(8)dG were found in the urine, plasma and striatal(More)
Several lines of evidence implicate excitotoxic mechanisms in the pathogenesis of amyotrophic lateral sclerosis (ALS). Transgenic mice with a superoxide dismutase mutation (G93A) have been utilized as an animal model of familial ALS (FALS). We examined the cortical concentrations of glutamate using in vivo microdialysis and in vivo nuclear magnetic(More)
Transgenic mice that express mutant human amyloid precursor protein (APPTg2576) develop beta-amyloid (Abeta) plaques throughout the cortex starting at 10-12 months of age. We examined the neurochemical profile of APPTg2576 mice using in vitro and in vivo magnetic resonance spectroscopy (MRS); gross abnormalities using magnetic resonance imaging (MRI) and(More)
The rapid development of transgenic mouse models of neurodegenerative diseases, in parallel with the rapidly expanding growth of MR techniques for assessing in vivo, non-invasive, neurochemistry, offers the potential to develop novel markers of disease progression and therapy. In this review we discuss the interpretation and utility of MRS for the study of(More)
Amylin, a pancreatic peptide, and amyloid-beta peptides (Aβ), a major component of Alzheimer's disease (AD) brain, share similar β-sheet secondary structures, but it is not known whether pancreatic amylin affects amyloid pathogenesis in the AD brain. Using AD mouse models, we investigated the effects of amylin and its clinical analog, pramlintide, on AD(More)
The precise cause of neuronal death in Huntington's disease (HD) is unknown. Proteolytic products of the huntingtin protein can contribute to toxic cellular aggregates that may be formed in part by tissue transglutaminase (Tgase). Tgase activity is increased in HD brain. Treatment in R6/2 transgenic HD mice, using the transglutaminase inhibitor cystamine,(More)