Learn More
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) Nef protein is required for efficient virus replication in vivo and displays a number of distinct and apparently unrelated biological activities in vitro. Of these, one of the most readily demonstrated is the efficient internalization and degradation of cell-surface CD4, the receptor for the HIV-1(More)
Dendritic cells (DCs) are key regulators of immune responses that activate naive antigen-specific T lymphocytes. In draining lymph nodes, antigen-bearing DCs are reported to be rare and short-lived. How such small numbers of short-lived DCs can activate rare antigen-specific T cells is unclear. Here we show that after immunization of mouse skins by gene(More)
DNA-based immunizations have been used to determine the patterns of type 1 and type 2 cytokines that can be induced in vivo for Ag-specific CD4(+) and CD8(+) T cells. IL-4 was used as a signature cytokine for a type 2 T cell response and IFN-gamma as the signature cytokine for a type 1 response. Gene gun deliveries of secreted Ags were used to bias(More)
Murine Ag-specific CD8(+) T cells express various NK markers and NK inhibitory receptors that have been proposed to modulate immune responses. Following acute infection of C57BL/6 and BALB/cJ mice with lymphocytic choriomeningitis virus (LCMV), we observed that Ag-specific CD8(+) T cells expressed CD94/NKG2. Only slight expression of Ly49A and Ly49C(More)
DNA vaccines represent a novel and powerful alternative to conventional vaccine approaches. They are extremely stable and can be produced en masse at low cost; more importantly, DNA vaccines against emerging pathogens or bioterrorism threats can be quickly constructed based solely upon the pathogen's genetic code. The main drawback of DNA vaccines is that(More)
Although endocytosed proteins are commonly presented via the class II MHC pathway to stimulate CD4(+) T cells, professional APCs can also cross-present Ags, whereby these exogenous peptides can be complexed with class I MHC for cross-priming of CD8(+) T cells. Whereas the ability of dendritic cells (DCs) to cross-present Ags is well documented, it is not(More)
In these studies, we address the ability of DNA encoding Th1 cytokines to bias the isotype of antibody raised by neonatal or adult immunization with an influenza hemagglutinin expressing DNA (HA-DNA). Neonatal mice coimmunized with HA-DNA and either IL-12 or IFN-gamma-expressing DNA developed IgG2a-biased immune responses, regardless of inoculation method.(More)
Apoptotic bodies can be used to target delivery of DNA-expressed immunogens into professional antigen-presenting cells (APCs). Here we show that antigen-laden apoptotic bodies created by vectors co-expressing influenza virus hemagglutinin (HA) or nucleoprotein (NP) genes and mutant caspase genes markedly increased T-cell responses. Both CD8 and CD4 T-cell(More)
Maternal antibody is the major form of protection from disease in early life when the neonatal immune system is still immature; however, the presence of maternal antibody also interferes with active immunization, placing infants at risk for severe bacterial and viral infection. We tested the ability of intramuscular and gene gun immunization with DNA(More)
For this study, we used DNA-based immunizations to elicit gamma interferon-producing (Tc1) or interleukin 4 (IL-4)-producing (Tc2) CD8 T cells to the influenza virus nucleoprotein. We examined the response of these cells to an intranasal viral challenge. Both the Tc2- and Tc1-biased responses were present in mice with predominantly IL-4-producing (Th2) CD4(More)