Learn More
The functional complexity of the human transcriptome is not yet fully elucidated. We report a high-throughput sequence of the human transcriptome from a human embryonic kidney and a B cell line. We used shotgun sequencing of transcripts to generate randomly distributed reads. Of these, 50% mapped to unique genomic locations, of which 80% corresponded to(More)
Alternative splicing increases transcriptome and proteome diversification. Previous analyses aiming at comparing the rate of alternative splicing between different organisms provided contradicting results. These contradicting results were attributed to the fact that both analyses were dependent on the expressed sequence tag (EST) coverage, which varies(More)
Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at(More)
Alternative splicing events that are conserved in orthologous genes in different species are commonly viewed as reliable evidence of authentic, functionally significant alternative splicing events. Several recent bioinformatic analyses have shown that conserved alternative exons possess several features that distinguish them from alternative exons that are(More)
We investigated the regulatory mechanisms which may account for the reduction of glycolysis in brain during severe hypoglycemia. Phosphofructokinase (PFK), the rate-limiting enzyme in glycolysis, is known to be regulated by allosteric effectors, as well as by a reversible binding to cell cytoskeleton. These two mechanisms were studied, in rat brain, during(More)
  • 1