Learn More
Experiments have lagged theory in exploring chemical interactions at temperatures so low that translational degrees of freedom can no longer be treated classically. The difficulty has been to realize in the laboratory low-enough collisional velocities between neutral reactants to access this regime. We report here the realization of merged neutral(More)
The long standing goal of chemical physics is finding a convenient method to create slow and cold beams intense enough to observe chemical reactions in the temperature range of a few Kelvin. We present an extensive numerical analysis of our moving magnetic trap decelerator showing that a 3D confinement throughout the deceleration process enables(More)
Quantum phenomena in the translational motion of reactants, which are usually negligible at room temperature, can dominate reaction dynamics at low temperatures. In such cold conditions, even the weak centrifugal force is enough to create a potential barrier that keeps reactants separated. However, reactions may still proceed through tunnelling because, at(More)
  • 1