Learn More
A brain-computer interface (BCI) is a system that allows its users to control external devices with brain activity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major challenge. Success requires the effective interaction of two adaptive controllers: the user's brain,(More)
Interest in developing a new method of man-to-machine communication--a brain-computer interface (BCI)--has grown steadily over the past few decades. BCIs create a new communication channel between the brain and an output device by bypassing conventional motor output pathways of nerves and muscles. These systems use signals recorded from the scalp, the(More)
We studied the reactivity of EEG rhythms (mu rhythms) in association with the imagination of right hand, left hand, foot, and tongue movement with 60 EEG electrodes in nine able-bodied subjects. During hand motor imagery, the hand mu rhythm blocked or desynchronized in all subjects, whereas an enhancement of the hand area mu rhythm was observed during foot(More)
We propose a new measure (phase-slope index) to estimate the direction of information flux in multivariate time series. This measure (a) is insensitive to mixtures of independent sources, (b) gives meaningful results even if the phase spectrum is not linear, and (c) properly weights contributions from different frequencies. These properties are shown in(More)
OBJECTIVE A fully automated method for reducing EOG artifacts is presented and validated. METHODS The correction method is based on regression analysis and was applied to 18 recordings with 22 channels and approx. 6 min each. Two independent experts scored the original and corrected EEG in a blinded evaluation. RESULTS The expert scorers identified in(More)
The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type(More)
Electroencephalogram (EEG) recordings during right and left motor imagery can be used to move a cursor to a target on a computer screen. Such an EEG-based brain-computer interface (BCI) can provide a new communication channel to replace an impaired motor function. It can be used by, e.g., patients with amyotrophic lateral sclerosis (ALS) to develop a simple(More)
Software development is a key issue in brain-computer interface (BCI) research. Software can show the similarities and differences of different data processing methods. It can also make clear which hyperparameters must be determined for particular algorithms. And it can demonstrate whether certain concepts are compatible or not. With BioSig's comprehensive(More)
This paper describes a research approach to develop a brain-computer interface (BCI) based on recognition of subject-specific EEG patterns. EEG signals recorded from sensorimotor areas during mental imagination of specific movements are classified on-line and used e.g. for cursor control. In a number of on-line experiments, various methods for EEG feature(More)
EEG feedback studies demonstrate that human subjects can learn to regulate electrocortical activity over the sensorimotor cortex. Such self-induced EEG changes could serve as control signals for a Brain Computer Interface. The experimental task of the current study was to imagine either right-hand or left-hand movement depending on a visual cue stimulus on(More)