Allyn C. Howlett

Learn More
Two types of cannabinoid receptor have been discovered so far, CB(1) (2.1: CBD:1:CB1:), cloned in 1990, and CB(2) (2.1:CBD:2:CB2:), cloned in 1993. Distinction between these receptors is based on differences in their predicted amino acid sequence, signaling mechanisms, tissue distribution, and sensitivity to certain potent agonists and antagonists that show(More)
Two subtypes of cannabinoid receptors, CB1 and CB2, have been described to date, although future investigations may elucidate other receptors. The actions of cannabimimetic agents via CB1 receptors in brain are mediated by GI/O to inhibit adenylate cyclase and Ca2+ channels. Little is known about signal transduction mechanisms utilized by CB2 receptors.(More)
The determination and characterization of a cannabinoid receptor from brain are reported. A biologically active bicyclic cannabinoid analgetic CP-55,940 was tritium-labeled to high specific activity. Conditions for binding to rat brain P2 membranes and synaptosomes were established. The pH optimum was between 7 and 8, and specific binding could be(More)
There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands(More)
Anandamide amidase (EC is responsible for the hydrolysis of arachidonoyl ethanolamide (anandamide). Relatively selective and potent enzyme reversible inhibitors effective in the low micromolar range, such as arachidonyl trifluoromethyl ketone (Arach-CF3), have been described (Koutek et al., J Biol Chem 269: 22937-22940, 1994). In the current study,(More)
Cannabinoid receptors were named because they have affinity for the agonist delta9-tetrahydrocannabinol (delta9-THC), a ligand found in organic extracts from Cannabis sativa. The two types of cannabinoid receptors, CB1 and CB2. are G protein coupled receptors that are coupled through the Gi/o family of proteins to signal transduction mechanisms that include(More)
The cellular mechanism of action of the cannabimimetic drugs is examined using cultured cells. In membranes from N18TG2 neuroblastoma cells and the neuroblastoma X glioma hybrid cells, NG108-15, the psychoactive cannabinoid drugs and their nantradol analogs could inhibit adenylate cyclase activity. This response was not observed in either the soluble(More)
The cannabinoid receptor family currently includes two types: CB1, characterized in neuronal cells and brain, and CB2, characterized in immune cells and tissues. CB1 and CB2 receptors are members of the superfamily of seven-transmembrane-spanning (7-TM) receptors, having a protein structure defined by an array of seven membrane-spanning helices with(More)
Delta9-Tetrahydrocannabinol from Cannabis sativa is mimicked by cannabimimetic analogs such as CP55940 and WIN55212-2, and antagonized by rimonabant and SR144528, through G-protein-coupled receptors, CB1 in the brain, and CB2 in the immune system. Eicosanoids anandamide and 2-arachidonoylglycerol are the "endocannabinoid" agonists for these receptors. CB1(More)
It is recognized that a number of the biological effects of delta 9-tetrahydrocannabinol (THC) can be attributed to a cannabinoid receptor found in abundance in the brain. Due to observations that cannabinoid drugs exert some developmental toxicity, it was of interest to examine the developmental pattern of cannabinoid receptors in the brain of neonatal(More)