Allison R. Larson

Learn More
DNA methylation at the 5 position of cytosine (5-mC) is a key epigenetic mark that is critical for various biological and pathological processes. 5-mC can be converted to 5-hydroxymethylcytosine (5-hmC) by the ten-eleven translocation (TET) family of DNA hydroxylases. Here, we report that "loss of 5-hmC" is an epigenetic hallmark of melanoma, with(More)
Of more than 150 000 published studies evaluating new biomarkers, fewer than 100 biomarkers have been implemented for patient care. One reason for this is lack of rigorous testing by the medical community to validate claims for biomarker clinical relevance, and potential reluctance to publish negative results when confirmation is not obtained. Here we(More)
DNA methylation is the most well-studied epigenetic modification in cancer biology. 5-hydroxymethylcytosine is an epigenetic mark that can be converted from 5-methylcytosine by the ten-eleven translocation gene family. We recently reported the loss of 5-hydroxymethylcytosine in melanoma compared with benign nevi and suggested that loss of this epigenetic(More)
Id1, which belongs to the Id family of helix-loop-helix transcription factors has been most associated with tumor progression and metastatsis; however, its significance in lung cancers has not been extensively explored. Here we seek to evaluate the expression of Id1 in a pilot study of nonsmall-cell lung cancers (NSCLCs) and determine its diagnostic and(More)
Merkel cell carcinoma (MCC) is a highly virulent cutaneous neoplasm that, like melanoma, is a frequent cause of patient morbidity and mortality. The cellular mechanisms responsible for the aggressive behavior of MCC remain unknown. Vasculogenic mimicry (VM) is a phenomenon associated with cancer virulence, including in melanoma, whereby anastomosing laminin(More)
Matrix metalloproteinases (MMPs) are key biological mediators of processes as diverse as wound healing, embryogenesis, and cancer progression. Although MMPs may be induced through multiple signaling pathways, the precise mechanisms for their regulation in cancer are incompletely understood. Because cytoskeletal changes are known to accompany MMP expression,(More)
  • 1