Allen H. Hoffman

Learn More
A micromechanical model of fibrous soft tissue has been developed which predicts upper and lower bounds on mechanical properties based on the structure and properties of tissue components by Ault and Hoffman [3, 4]. In this paper, two types of biological tissue are modeled and the results compared to experimental test data. The highly organized structure of(More)
1. The sensitivity of group II joint afferents innervating cat knee joint capsule to in-plane stretch was studied in vitro. Single afferents were recorded from teased filaments of the posterior articular nerve. The capsule was stretched by applying forces through tabs along the edges of the capsule (3 tabs/edge) with the use of an apparatus that allowed for(More)
Atherosclerotic plaque may rupture without warning causing heart attack or stroke. Knowledge of the ultimate strength of human atherosclerotic tissues is essential for understanding the rupture mechanism and predicting cardiovascular events. Despite its great importance, experimental data on ultimate strength of human atherosclerotic carotid artery remains(More)
Water diffusion measurements were performed on rabbit Achilles tendons during static tensile loading and tendons in an unloaded state. The apparent diffusion coefficient (ADC) was measured along two directions: parallel and perpendicular to the long axis of the tendon. Tendons were studied after being prepared in two ways: (a) after being stored frozen in(More)
A micromechanical model has been developed to study and predict the mechanical behavior of fibrous soft tissues. The model uses the theorems of least work and minimum potential energy to predict upper and lower bounds on material behavior based on the structure and properties of tissue components. The basic model consists of a composite of crimped collagen(More)
1. Experiments were conducted to test the hypothesis that the responses of joint capsule mechanoreceptors better encode tissue stress or tissue strain. The experimental model was a small ligament from the cat knee capsule, which was stretched uniaxially in vitro. Experiments were done with either force or displacement as the controlled variable, and with(More)
A finite element based method has been developed for measuring strains in soft tissue. An array of markers is placed on the tissue surface and treated as nodes of a four node isoparametric element. The displacements of the marker centroids are directly measured using a high sensitivity television camera. Finite element method mathematics are then used to(More)
A 69 +/- 5% stenosis was produced in the rat aorta, with the purpose of correlating endothelial changes with local flow patterns and with levels of shear stress; the hydrodynamic data were obtained from a scaled-up model of the stenosed aorta. In the throat of the stenosis, where shear stress values were 15-25 times normal, the endothelium was stripped off(More)
The vertical loading in the posterior capsule of the cat knee has been measured while the knee is rotated into hyperextension. Tissue loading was determined using a previously verified model of the capsule that represents its upper edge as a catenary suspension cable. Tensile loads in the cable were measured using the discharge of mechanoreceptive sensory(More)