Allen G. Strickler

Learn More
We have compared Pax6 expression during embryonic development in the eyed surface form (surface fish) and several different eyeless cave forms (cavefish) of the teleost Astyanax mexicanus. Despite lacking functional eyes as adults, cavefish embryos form small optic primordia, which later arrest in development and show various degrees of eye degeneration.(More)
The neural crest, a source of many different cell types in vertebrate embryos, has not been identified in other chordates. Current opinion therefore holds that neural crest cells were a vertebrate innovation. Here we describe a migratory cell population resembling neural crest cells in the ascidian urochordate Ecteinascidia turbinata. Labelling of embryos(More)
We have investigated expression of the homeobox gene Prox 1 during eye degeneration and sensory organ compensation in cavefish embryos. The teleost Astyanax mexicanus consists of sighted surface-dwelling forms (surface fish) and several populations of blind cave-dwelling forms (cavefish), which have evolved independently. Eye formation is initiated during(More)
We have conducted a survey of the expression patterns of five genes encoding three different classes of major lens proteins during eye degeneration in the blind cavefish Astyanax mexicanus. This species consists of two forms, an eyed surface-dwelling form (surface fish) and a blind cave-dwelling (cavefish) form. Cavefish form an optic primordium with a lens(More)
The evolutionary mechanisms responsible for the loss of eyes in cave animals are still unresolved. Hypotheses invoking natural selection or neutral mutation have been advanced to explain eye regression. Here we describe comparative molecular and developmental studies in the teleost Astyanax mexicanus that shed new light on this problem. A. mexicanus is a(More)
The teleost Astyanax mexicanus exhibits eyed surface dwelling (surface fish) and blind cave dwelling (cavefish) forms. Despite lacking functional eyes as adults, cavefish embryos form eye primordia, which later arrest in development, degenerate and sink into the orbit. We are comparing the expression patterns of various eye regulatory genes during(More)
Changes in gene expression were examined by microarray analysis during development of the eyed surface dwelling (surface fish) and blind cave-dwelling (cavefish) forms of the teleost Astyanax mexicanus De Filippi, 1853. The cross-species microarray used surface and cavefish RNA hybridized to a DNA chip prepared from a closely related species, the zebrafish(More)
The lens influences retinal growth and differentiation during vertebrate eye development but the mechanisms are not understood. The role of the lens in retinal growth and development was studied in the teleost Astyanax mexicanus, which has eyed surface-dwelling (surface fish) and blind cave-dwelling (cavefish) forms. A lens and laminated retina initially(More)
We used the teleost Astyanaxmexicanus to examine the role of the lens in optic nerve and tectum development. This speciesis unusually suited for studies of nervous system development and evolution because of its two extant forms: an eyed surface dwelling (surface fish) and several blind cave dwelling (cavefish) forms. Cavefish embryos initially form eye(More)
The extreme environment of subterranean caves presents an adaptive challenge to troglobitic organisms. The mechanisms by which natural selection modify an ancestral surface neural circuit to produce a novel subterranean behavior remain a mystery. To address this question, we performed cross species microarray experiments to compare differences in gene(More)