Allan S. Myerson

Learn More
Crystallization is vital to many processes occurring in nature and in the chemical, pharmaceutical, and food industries. Notably, crystallization is an attractive isolation step for manufacturing because this single process combines both particle formation and purification. Almost all of the products based on fine chemicals, such as dyes, explosives, and(More)
Although nanoporous materials have been explored for controlling crystallization of polymorphs in recent years, polymorphism in confined environments is still poorly understood, particularly from a kinetic perspective, and the role of the local structure of the substrate has largely been neglected. Herein, we report the use of a novel material, polymer(More)
Producing stable nanocrystals confined to porous excipient media is a desirable way to increase the dissolution rate and improve the bioavailability of poorly water soluble pharmaceuticals. The poorly soluble pharmaceutical fenofibrate was crystallized in controlled pore glass (CPG) of 10 different pore sizes between 12 nm and 300 nm. High drug loadings of(More)
Hydrogen bond donating cosolvents have been shown to significantly reduce the solubility of acetaminophen (AAP) in ionic liquids containing the acetate anion. Reduced solubility arises from competition for solvation by the acetate anion and can be used for the design of advanced separation techniques, illustrated by the crystallization of AAP.
Crystallization of a molecular liquid from solution often initiates at solid-liquid interfaces, and nucleation rates are generally believed to be enhanced by surface roughness. Here we show that, on a rough surface, the shape of surface nanopores can also alter nucleation kinetics. Using lithographic methods, we patterned polymer films with nanopores of(More)
By switching between linear and circular polarization in the irradiation of supersaturated solutions of the amino acid glycine in water with intense nanosecond pulses of near-infrared laser light, we have obtained the gamma and alpha phases, respectively, through nonphotochemical light-induced nucleation (NPLIN). This is the first report of light(More)
Polymorphism in molecular crystals is a prevalent phenomenon and is of great interest to the pharmaceutical community. The solid-state form is a key quality attribute of a crystalline product. Inconsistencies in the solid phase produced during the manufacturing and storage of drug substances and drug products may have severe consequences. It is essential to(More)
Self-assembled monolayers (SAMs) of rigid biphenyl thiols are employed as heterogeneous nucleants for the crystallization of L-alanine and DL-valine. Powder X-ray diffraction and interfacial angle measurements reveal that the L-alanine crystallographic planes corresponding to nucleation are {200}, {020}, and {011} on SAMs of 4′-hydroxy-(4-mercaptobiphenyl),(More)