Allan R. Jones

Learn More
Molecular approaches to understanding the functional circuitry of the nervous system promise new insights into the relationship between genes, brain and behaviour. The cellular diversity of the brain necessitates a cellular resolution approach towards understanding the functional genomics of the nervous system. We describe here an anatomically comprehensive(More)
Ascertaining the impact of uncharacterized perturbations on the cell is a fundamental problem in biology. Here, we describe how a single assay can be used to monitor hundreds of different cellular functions simultaneously. We constructed a reference database or "compendium" of expression profiles corresponding to 300 diverse mutations and chemical(More)
The Cre/lox system is widely used in mice to achieve cell-type-specific gene expression. However, a strong and universally responding system to express genes under Cre control is still lacking. We have generated a set of Cre reporter mice with strong, ubiquitous expression of fluorescent proteins of different spectra. The robust native fluorescence of these(More)
Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive(More)
Cell type-specific expression of optogenetic molecules allows temporally precise manipulation of targeted neuronal activity. Here we present a toolbox of four knock-in mouse lines engineered for strong, Cre-dependent expression of channelrhodopsins ChR2-tdTomato and ChR2-EYFP, halorhodopsin eNpHR3.0 and archaerhodopsin Arch-ER2. All four transgenes mediated(More)
GLD-1, a putative RNA binding protein, is essential for oocyte development in Caenorhabditis elegans. A gld-1 null mutation abolishes hermaphrodite oogenesis and confers a tumorous germline phenotype in which presumptive female germ cells exit the meiotic pathway and return to the mitotic cell cycle. Here we demonstrate that gld-1(null) germ lines express(More)
The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly(More)
The Allen Brain Atlas, a Web-based, genome-wide atlas of gene expression in the adult mouse brain, was an experiment on a massive scale. The development of the atlas faced a combination of great technical challenges and a non-traditional open research model, and it encountered many hurdles on the path to completion and community adoption. Having overcome(More)
The gld-1 gene of Caenorhabditis elegans is a germ-line-specific tumor suppressor gene that is essential for oogenesis. We have cloned the gld-1 gene and find that it encodes two proteins that differ by 3 amino acids. The predicted proteins contain a approximately 170-amino-acid region that we term the GSG domain (GRP33/Sam68/GLD-1), on the basis of(More)