Allan M. Goldstein

Learn More
OBJECTIVE To determine whether individuals with situs inversus totalis (SI), a condition in which there is a mirror-image reversal of asymmetric visceral organs, have alterations in brain asymmetries. BACKGROUND The human brain is asymmetric in structure and function. Although correlations between anatomic asymmetries and functional lateralization in(More)
Necrotizing enterocolitis (NEC) is a devastating neonatal intestinal inflammatory disease, occurring primarily in premature infants, causing significant morbidity and mortality. The pathogenesis of NEC is associated with an excessive inflammatory IL-8 response. In this study, we hypothesized that this excessive inflammatory response is related to an(More)
Neural crest cells (NCC) migrate, proliferate, and differentiate within the wall of the gastrointestinal tract to give rise to the neurons and glial cells of the enteric nervous system (ENS). The intestinal microenvironment is critical in this process and endothelin-3 (ET3) is known to have an essential role. Mutations of this gene cause distal intestinal(More)
The enteric nervous system (ENS) develops from neural crest cells that migrate along the intestine, differentiate into neurons and glia, and pattern into two plexuses within the gut wall. Inductive interactions between epithelium and mesenchyme regulate gut development, but the influence of these interactions on ENS development is unknown.(More)
All internal organs are asymmetric along the left-right axis. Here we report a genetic screen to discover mutations which perturb organ laterality. Our particular focus is upon whether, and how, organs are linked to each other as they achieve their laterally asymmetric positions. We generated mutations by ENU mutagenesis and examined F3 progeny using a(More)
The enteric nervous system (ENS) is derived from neural crest cells that migrate along the gastrointestinal tract to form a network of neurons and glia that are essential for regulating intestinal motility. Despite the number of genes known to play essential roles in ENS development, the molecular etiology of congenital disorders affecting this process(More)
The extracardiac defects in patients with heterotaxy have not been examined as extensively as cardiac defects. We found a high incidence of midline-associated defects in 160 autopsied cases of heterotaxy (asplenia, polysplenia, or single right-sided spleen). Fifty-two percent of patients with left-sided polysplenia had a midline-associated defect, as did(More)
The enteric nervous system (ENS) is principally derived from vagal and sacral neural crest cells that migrate throughout the gastrointestinal tract before differentiating into neurons and glia. These cells form two concentric rings of ganglia and regulate intestinal motility, absorption, and secretion. Abnormalities of ENS development can lead to disorders(More)
The enteric nervous system (ENS) is derived from vagal and sacral neural crest cells that migrate, proliferate, and differentiate into enteric neurons and glia within the gut wall. The mechanisms regulating enteric neural crest-derived cell (ENCC) migration are poorly characterized despite the importance of this process in gut formation and function.(More)
Anal canal duplications are rare congenital malformations, with fewer than 50 reported cases in the literature. Anal canal duplications are noncommunicating second anal orifices located posterior to the true anus without other associated hindgut duplications. Typically, these are asymptomatic, tubular malformations that present in females before the age of(More)