Learn More
Movements of the whole-body center of mass during quiet standing have been estimated from measurements of body segment movements. These whole-body center of mass movements have been compared with movements of the center of mass as predicted from a simple inverted-pendulum model of standing. However, the total body center of mass is a weighted average of the(More)
We investigated the effects of ageing on balance corrections induced by sudden stance perturbations in different directions. Effects were examined in biomechanical and electromyographic (EMG) recordings from a total of 36 healthy subjects divided equally into three age groups (20-34, 35-55 and 60-75 years old). Perturbations consisted of six combinations of(More)
OBJECTIVES Our aim was to track improvements in postural control during recovery from an acute unilateral peripheral vestibular deficit (UVL), presumably due to vestibular neuritis, and to determine if recovery rates were different for stance and gait tasks. Postural control was quantified using simple measurements of trunk sway: amplitudes of trunk sway(More)
This study investigated the effects of postural set on the cortical response evoked by an external perturbation to human upright stance. Postural set was manipulated by providing either predictable or unpredictable whole body perturbations which required balance corrections to maintain upright stability. Unpredictable perturbations evoked a large negative(More)
Steering is an integral component of adaptive locomotor behavior. Along with reorientation of gaze and body in the direction of intended travel, body center of mass must be controlled in the mediolateral plane. In this study we examine how these subtasks are sequenced when steering is planned early or initiated under time constraints. Whole body kinematics(More)
This study investigated the relationship between fear of falling (FOF) and qualitative and quantitative postural control in Parkinson's disease (PD). Fifty-eight nondemented PD patients were studied along with age-matched healthy controls. The degree of FOF was estimated using the Activities-specific Balance Confidence scale. Qualitative postural control(More)
The characteristics of visual sampling required for successful locomotion over various terrains is the focus of this work. In the first experiment we directly address the role of continuous visual monitoring of the environment in guiding locomotion by allowing the subjects to choose when and where to take a visual sample of the terrain and examine the(More)
Although it is well established that postural threat modifies postural control, little is known regarding the underlying mechanism(s) responsible for these changes. It is possible that changes in postural control under conditions of elevated postural threat result from a shift to a more conscious control of posture. The purpose of this study was to(More)
This study investigated the effects of postural threat on the cortical response associated with postural reactions to predictable and unpredictable perturbations to upright stance. Postural threat was manipulated by having individuals stand on an elevated surface to alter the context in which the postural task was performed. Ten healthy young adults(More)
Although recent work suggests that cortical processing can be involved in the control of balance responses, the central mechanisms involved in these reactions remain unclear. We presently investigated the characteristics of scalp-recorded perturbation-evoked responses (PERs) following a balance disturbance. Eight young adults stabilized an inverted pendulum(More)