Allan Jacobson

Learn More
We describe here a multiplexed protein quantitation strategy that provides relative and absolute measurements of proteins in complex mixtures. At the core of this methodology is a multiplexed set of isobaric reagents that yield amine-derivatized peptides. The derivatized peptides are indistinguishable in MS, but exhibit intense low-mass MS/MS signature ions(More)
Nonsense mutations promote premature translational termination and cause anywhere from 5-70% of the individual cases of most inherited diseases. Studies on nonsense-mediated cystic fibrosis have indicated that boosting specific protein synthesis from <1% to as little as 5% of normal levels may greatly reduce the severity or eliminate the principal(More)
Nonsense-mediated messenger RNA decay (NMD) is triggered by premature translation termination, but the features distinguishing premature from normal termination are unknown. One model for NMD suggests that decay-inducing factors bound to mRNAs during early processing events are routinely removed by elongating ribosomes but remain associated with mRNAs when(More)
Although most mRNA molecules derived from protein-coding genes are destined to be translated into functional polypeptides, some are eliminated by cellular quality control pathways that collectively perform the task of mRNA surveillance. In the nonsense-mediated decay (NMD) pathway premature translation termination promotes the recruitment of a set of(More)
Most eukaryotic mRNAs are subject to considerable post-transcriptional modification, including capping, splicing, and polyadenylation. The process of polyadenylation adds a 3' poly(A) tail and provides the mRNA with a binding site for a major class of regulatory factors, the poly(A)-binding proteins (PABPs). These highly conserved polypeptides are found(More)
Transcripts regulated by the yeast nonsense-mediated and 5' to 3' mRNA decay pathways were identified by expression profiling of wild-type, upf1Delta, nmd2Delta, upf3Delta, dcp1Delta, and xrn1Delta cells. This analysis revealed that inactivation of Upf1p, Nmd2p, or Upf3p has identical effects on global RNA accumulation; inactivation of Dcp1p or Xrn1p(More)
Gene expression is highly accurate and rarely generates defective proteins. Several mechanisms ensure this fidelity, including specialized surveillance pathways that rid the cell of mRNAs that are incompletely processed or that lack complete open reading frames. One such mechanism, nonsense-mediated mRNA decay, is triggered when ribosomes encounter a(More)
Rapid turnover of nonsense-containing mRNAs in yeast in dependent on the product of the UPF1 gene (Upf1p). Mutations in UPF1 lead to the selective stabilization of mRNAs containing early nonsense mutations without affecting the decay rates of most other mRNAs. To identify other integral components of this decay pathway, we have employed a two-hybrid screen,(More)
mRNA decay rates often increase when translation is terminated prematurely due to a frameshift or nonsense mutation. We have identified a yeast gene, UPF1, that codes for a trans-acting factor whose function is necessary for enhanced turnover of mRNAs containing a premature stop codon. In the absence of UPF1 function, frameshift or nonsense mutations in the(More)
We developed a procedure to measure mRNA decay rates in the yeast Saccharomyces cerevisiae and applied it to the determination of half-lives for 20 mRNAs encoded by well-characterized genes. The procedure utilizes Northern (RNA) or dot blotting to quantitate the levels of individual mRNAs after thermal inactivation of RNA polymerase II in an rpb1-1(More)