Allan Balmain

Learn More
Epithelial and hematopoietic cells have a high turnover and their progenitor cells divide continuously, making them prime targets for genetic and epigenetic changes that lead to cell transformation and tumorigenesis. The consequent changes in cell behavior and responsiveness result not only from genetic alterations such as activation of oncogenes or(More)
Animal experiments remain essential to understand the fundamental mechanisms underpinning malignancy and to discover improved methods to prevent, diagnose and treat cancer. Excellent standards of animal care are fully consistent with the conduct of high quality cancer research. Here we provide updated guidelines on the welfare and use of animals in cancer(More)
The FBXW7/hCDC4 gene encodes a ubiquitin ligase implicated in the control of chromosome stability. Here we identify the mouse Fbxw7 gene as a p53-dependent tumour suppressor gene by using a mammalian genetic screen for p53-dependent genes involved in tumorigenesis. Radiation-induced lymphomas from p53+/- mice, but not those from p53-/- mice, show frequent(More)
The past decade has seen great strides in our understanding of the genetic basis of human disease. Arguably, the most profound impact has been in the area of cancer genetics, where the explosion of genomic sequence and molecular profiling data has illustrated the complexity of human malignancies. In a tumor cell, dozens of different genes may be aberrant in(More)
TGFbeta ligands act as tumor suppressors in early stage tumors but are paradoxically diverted into potent prometastatic factors in advanced cancers. The molecular nature of this switch remains enigmatic. Here, we show that TGFbeta-dependent cell migration, invasion and metastasis are empowered by mutant-p53 and opposed by p63. Mechanistically, TGFbeta acts(More)
Transcriptional control by beta-catenin and lymphoid enhancer-binding factor 1 (LEF1)/T cell factor regulates proliferation in stem cells and tumorigenesis. Here we provide evidence that transcriptional co repressor homeodomain interacting protein kinase 2 (HIPK2) controls the number of stem and progenitor cells in the skin and the susceptibility to develop(More)
Metastasis is a multistep process that involves local tumour invasion followed by dissemination to, and re-establishment at, distant sites. Here we show that during multistage tumorigenesis, discrete expression thresholds of activated Smad2 and H-ras are sequentially surpassed, driving tumour progression through distinct phases from a differentiated(More)
Linkage analysis and haplotype mapping in interspecific mouse crosses (Mus musculus x Mus spretus) identified the gene encoding Aurora2 (Stk6 in mouse and STK15 in human) as a candidate skin tumor susceptibility gene. The Stk6 allele inherited from the susceptible M. musculus parent was overexpressed in normal cells and preferentially amplified in tumor(More)
Mice constitutively lacking alleles of the p53 tumour suppressor gene spontaneously develop lymphomas and sarcomas. We report here that a single dose of 4 Gy radiation dramatically decreases the latency for tumour development in p53 heterozygous mice. The pattern of genetic alterations at the remaining wild type allele in these tumours differs substantially(More)
Tumour promoters induce a wide spectrum of morphological and biochemical alterations when applied to mouse epidermis in vivo. These include the induction of RNA, DNA and protein synthesis during discrete phases of proliferation and differentiation. This constitutes an ideal model for studying molecular events underlying the disruption of epidermal(More)