Learn More
The crystal structure of a pepstatin-insensitive carboxyl proteinase from Pseudomonas sp. 101 (PSCP) has been solved by single-wavelength anomalous diffraction using the absorption peak of bromide anions. Structures of the uninhibited enzyme and of complexes with an inhibitor that was either covalently or noncovalently bound were refined at 1.0-1.4 A(More)
ATP-dependent Lon protease degrades specific short-lived regulatory proteins as well as defective and abnormal proteins in the cell. The crystal structure of the proteolytic domain (P domain) of the Escherichia coli Lon has been solved by single-wavelength anomalous dispersion and refined at 1.75-A resolution. The P domain was obtained by chymotrypsin(More)
The successful development of a number of HIV-1 protease (PR) inhibitors for the treatment of AIDS has validated the utilization of retroviral PRs as drug targets and necessitated their detailed structural study. Here we report the structure of a complex of human T cell leukemia virus type 1 (HTLV-1) PR with a substrate-based inhibitor bound in subsites P5(More)
Retroviral proteases form a unique subclass of the family of aspartic proteases. These homodimeric enzymes from a number of viral sources have by now been extensively characterized, both structurally and biochemically. The importance of such knowledge to the development of new drugs against AIDS has been, to a large extent, the driving force behind this(More)
Sedolisins (serine-carboxyl peptidases) are proteolytic enzymes whose fold resembles that of subtilisin; however, they are considerably larger, with the mature catalytic domains containing approximately 375 amino acids. The defining features of these enzymes are a unique catalytic triad, Ser-Glu-Asp, as well as the presence of an aspartic acid residue in(More)
Crystal structures of the serine-carboxyl proteinase from Pseudomonas sp. 101 (PSCP), complexed with a number of inhibitors, have been solved and refined at high- to atomic-level resolution. All of these inhibitors (tyrostatin, pseudo-tyrostatin, AcIPF, AcIAF, and chymostatin, as well as previously studied iodotyrostatin and pseudo-iodotyrostatin) make(More)
The conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41 is transiently exposed during the fusion process by forming a pre-hairpin intermediate, thus representing an attractive target for the design of fusion inhibitors and neutralizing antibodies. In previous studies we reported a series of broadly neutralizing(More)
Using energy and density guided Rosetta refinement to improve molecular replacement, we determined the crystal structure of the protease encoded by xenotropic murine leukemia virus-related virus (XMRV). Despite overall similarity of XMRV protease to other retropepsins, the topology of its dimer interface more closely resembles those of the monomeric,(More)
Kumamolisin-As (previously called ScpA) is the first known example of a collagenase from the sedolisin family (MEROPS S53). This enzyme is active at low pH and in elevated temperatures. In this study that used x-ray crystallographic and biochemical methods, we investigated the structural basis of the preference of this enzyme for collagen and the importance(More)