Alison V. Nairn

Learn More
Glycosaminoglycans (GAGs) play a critical role in binding and activation of growth factors involved in cell signaling critical for developmental biology. The biosynthetic pathways for GAGs have been elucidated over the past decade and now analytical methodology makes it possible to determine GAG composition in as few as 10 million cells. A glycomics(More)
Protein glycosylation is a ubiquitous post-translational modification found in all domains of life. Despite their significant complexity in animal systems, glycan structures have crucial biological and physiological roles, from contributions in protein folding and quality control to involvement in a large number of biological recognition events. As a(More)
Glycan structures covalently attached to proteins and lipids play numerous roles in mammalian cells, including protein folding, targeting, recognition, and adhesion at the molecular or cellular level. Regulating the abundance of glycan structures on cellular glycoproteins and glycolipids is a complex process that depends on numerous factors. Most models for(More)
Heparan sulfate (HS) has been implicated in regulating cell fate decisions during differentiation of embryonic stem cells (ESCs) into advanced cell types. However, the necessity and the underlying molecular mechanisms of HS in early cell lineage differentiation are still largely unknown. In this study, we examined the potential of EXT1(-/-) mouse ESCs(More)
Loblolly pine (Pinus taeda L.), the most widely planted tree species in the United States, is an important source of wood and wood fibers for a multitude of consumer products. Wood fibers are primarily composed of secondary cell walls, and cellulose, hemicelluloses and lignin are major components of wood. Fiber morphology and cell wall composition are(More)
The glycosylphosphatidylinositol (GPI) anchor is a lipid and glycan modification added to the C terminus of certain proteins in the endoplasmic reticulum by the activity of a multiple subunit enzyme complex known as the GPI transamidase (GPIT). Several subunits of GPIT have increased expression levels in breast carcinoma. In an effort to identify(More)
The abundance and structural diversity of glycans on glycoproteins and glycolipids are highly regulated and play important roles during vertebrate development. Because of the challenges associated with studying glycan regulation in vertebrate embryos, we have chosen to study mouse embryonic stem (ES) cells as they differentiate into embryoid bodies (EBs) or(More)
BACKGROUND Proteoglycans are found on the cell surface and in the extracellular matrix, and serve as prime sites for interaction with signaling molecules. Proteoglycans help regulate pathways that control stem cell fate, and therefore represent an excellent tool to manipulate these pathways. Despite their importance, there is a dearth of data linking(More)
We isolated mouse embryo fibroblasts (MEFs) from N-acetylglucosaminyltransferase Va (GnT-Va) knockout mice and studied the effects of loss of expression of GnT-Va on asparagine-linked glycans (N-glycan) synthesis and the gene expression of groups of glycosyltransferases and galectins. Loss of GnT-Va expression caused aberrant expression of several N-glycan(More)
Epithelial ovarian cancer is the deadliest female reproductive tract malignancy in Western countries. Less than 25% of cases are diagnosed when the cancer is confined, however, pointing to the critical need for early diagnostics for ovarian cancer. Identifying the changes that occur in the glycome of ovarian cancer cells may provide an avenue to develop a(More)