Alisa Krishtal

Learn More
Subsystem density-functional theory (DFT) is an emerging technique for calculating the electronic structure of complex molecular and condensed phase systems. In this topical review, we focus on some recent advances in this field related to the computation of condensed phase systems, their excited states, and the evaluation of many-body interactions between(More)
The values of molecular polarizabilities and softnesses of the 20 amino acids were computed ab initio (MP2). By using the iterative Hirshfeld scheme to partition the molecular electronic properties, we demonstrate that the values of the softness of the side chain of the 20 amino acids are clustered in groups reflecting their biochemical classification,(More)
The nature of the bonding of a series of gas-phase all-metal clusters containing the Al4 unit attached to an alkaline, alkaline earth, or transition metal is investigated at the DFT level using Mulliken, quantum theory of atoms in molecules (QTAIM), and Hirshfeld iterative (Hirshfeld-I) atomic partitionings. The characterization of ionic, covalent, and(More)
In this work, we present a novel model, referred to as BH-DFT-D, for the evaluation of London dispersion, with the purpose to correct the performance of local DFT exchange-correlation functionals for the description of van der Waals interactions. The new BH-DFT-D model combines the equations originally derived by Buckingham [Buckingham, A. D. Adv. Chem.(More)
In this work, a new partitioning method is presented which allows one to calculate properties of radicals, in particular, atomic spin populations. The method can be seen as an extension of the Hirshfeld-I method [ Bultinck , P. et al. J. Chem. Phys. 2007 , 126 , 144111 ], in which the atomic weight functions, defining the atoms-in-molecules, are constructed(More)
The polarizabilities of fifty methanol clusters (CH3OH)n, n = 1 to 12, were calculated at the B3LYP/6-311++G** level of theory and partitioned into molecular contributions using the Hirshfeld-I method. The resulting molecular polarizabilities were found to be determined by the polarizabilities of the two parts of the molecule, the hydrophilic hydroxyl group(More)
Polarizabilities of the low-lying isomers of (H(2)O)(N) (N = 6, 10, 20) clusters were computed by using Density Functional Theory. The global polarizabilities of the water isomers were found to depend mainly on the total number of water molecules rather than their cluster structures. We show that this result hides in fact a strong heterogeneity of the(More)
We present the finalized Buckingham-Hirshfeld method (BHD-DFT) for the evaluation of interaction energies of non-bonded dimers with Density Functional Theory (DFT). In the method, dispersion energies are evaluated from static multipole polarizabilities, obtained on-the-fly from Coupled Perturbed Kohn-Sham calculations and partitioned into diatomic(More)
The results of iterative Hirshfeld partitioning on the polarizability of monovalent anions (F(-), Cl(-), and Br(-)) and Na(+) in water clusters ranging from n = 0 to n = 25 are presented. In each case, the ions reach a limiting intrinsic polarizability in the fully hydrated state. For F(-), Cl(-), and Br(-) using B3LYP/aug-cc-pVDZ, the intrinsic(More)
Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a(More)