Learn More
Efficient delivery of therapeutic and diagnostic molecules to the cells and tissues is a difficult challenge. The cellular membrane is very effective in its role as a selectively permeable barrier. While it is essential for cell survival and function, also presents a major barrier for intracellular delivery of cargo such as therapeutic and diagnostic(More)
In an all-to-all network of integrate-and-fire neurons in which there is a disorder in the intrinsic oscillatory frequencies of the neurons, we show that through spike-timing-dependent plasticity the synapses which have the high-frequency neurons as presynaptic tend to be potentiated while the links originated from the low-frequency neurons are weakened.(More)
This review introduces quantum dots (QDs) and explores their properties, synthesis, applications, delivery systems in biology, and their toxicity. QDs are one of the first nanotechnologies to be integrated with the biological sciences and are widely anticipated to eventually find application in a number of commercial consumer and clinical products. They(More)
Quantum dots (QDs) are one of the first nanotechnologies to be integrated with the biological sciences that used for imaging or tracking macromolecules/cells in cell/tissue. Because of QDs are important in biomedical and biological applications, identify a variety of synthesis methods to produce QDs with different characteristics also is particularly(More)
A recurrent loop consisting of a single Hodgkin-Huxley neuron influenced by a chemical excitatory delayed synaptic feedback is considered. We show that the behavior of the system depends on the duration of the activity of the synapse, which is determined by the activation and deactivation time constants of the synapse. For the fast synapses, those for which(More)
A novel proposal for the zero-lag synchronization of the delayed coupled neurons, is to connect them indirectly via a third relay neuron. In this study, we develop a Poincaré map to investigate the robustness of the synchrony in such a relay system against inhomogeneity in the neurons and synaptic parameters. We show that when the inhomogeneity does not(More)
We address a question on the effect of common stochastic inputs on the correlation of the spike trains of two neurons when they are coupled through direct connections. We show that the change in the correlation of small amplitude stochastic inputs can be better detected when the neurons are connected by direct excitatory couplings. Depending on whether(More)
The human genome is exposed to mutations during the life cycle because of many types of changes in the DNA. Viruses, radiation, transposons, mutagenic chemicals, or any errors that happen during DNA replication or the meiotic process in the cell, may cause the mutation. Many mutations have no effect on phenotype or health, while some mutations cause crucial(More)
Many experimental and theoretical studies have suggested that the reliable propagation of synchronous neural activity is crucial for neural information processing. The propagation of synchronous firing activity in so-called synfire chains has been studied extensively in feed-forward networks of spiking neurons. However, it remains unclear how such neural(More)
Nanofibrous scaffolds have many advantages that make them excellent candidates for tissue engineering applications. The scaffolds with high surface area to volume ratio favor cell adhesion, proliferation, migration and differentiation. In the present study, the preparation of electrospun poly (ϵ-caprolactone)-polyethylene glycol-poly (ϵ-caprolactone)(More)