Learn More
In an all-to-all network of integrate-and-fire neurons in which there is a disorder in the intrinsic oscillatory frequencies of the neurons, we show that through spike-timing-dependent plasticity the synapses which have the high-frequency neurons as presynaptic tend to be potentiated while the links originated from the low-frequency neurons are weakened.(More)
This review introduces quantum dots (QDs) and explores their properties, synthesis, applications, delivery systems in biology, and their toxicity. QDs are one of the first nanotechnologies to be integrated with the biological sciences and are widely anticipated to eventually find application in a number of commercial consumer and clinical products. They(More)
Efficient delivery of therapeutic and diagnostic molecules to the cells and tissues is a difficult challenge. The cellular membrane is very effective in its role as a selectively permeable barrier. While it is essential for cell survival and function, also presents a major barrier for intracellular delivery of cargo such as therapeutic and diagnostic(More)
A recurrent loop consisting of a single Hodgkin-Huxley neuron influenced by a chemical excitatory delayed synaptic feedback is considered. We show that the behavior of the system depends on the duration of the activity of the synapse, which is determined by the activation and deactivation time constants of the synapse. For the fast synapses, those for which(More)
A novel proposal for the zero-lag synchronization of the delayed coupled neurons, is to connect them indirectly via a third relay neuron. In this study, we develop a Poincaré map to investigate the robustness of the synchrony in such a relay system against inhomogeneity in the neurons and synaptic parameters. We show that when the inhomogeneity does not(More)
We address a question on the effect of common stochastic inputs on the correlation of the spike trains of two neurons when they are coupled through direct connections. We show that the change in the correlation of small amplitude stochastic inputs can be better detected when the neurons are connected by direct excitatory couplings. Depending on whether(More)
Many experimental and theoretical studies have suggested that the reliable propagation of synchronous neural activity is crucial for neural information processing. The propagation of synchronous firing activity in so-called synfire chains has been studied extensively in feed-forward networks of spiking neurons. However, it remains unclear how such neural(More)
Shared upstream dynamical processes are frequently the source of common inputs in various physical and biological systems. However, due to finite signal transmission speeds and differences in the distance to the source, time shifts between otherwise common inputs are unavoidable. Since common inputs can be a source of correlation between the elements of(More)
Spike-timing-dependent plasticity (STDP) modifies synaptic strengths based on the relative timing of pre- and postsynaptic spikes. The temporal order of spikes turned out to be crucial. We here take into account how propagation delays, composed of dendritic and axonal delay times, may affect the temporal order of spikes. In a minimal setting, characterized(More)
When oscillators in a population receive signal from common sources, their inputs will be statistically correlated which can result to synchronization of the oscillators. In real physical and biological systems finite speed of the signal transmission might result in the correlation of non-zero lags between inputs if the target oscillators are of different(More)