Aline Cerf

Learn More
We present a method for profiling the 5-methyl cytosine distribution on single DNA molecules. Our method combines soft-lithography and molecular elongation to form ordered arrays estimated to contain more than 250 000 individual DNA molecules immobilized on a solid substrate. The methylation state of the DNA is detected and mapped by binding of(More)
Epigenetic modifications, such as DNA and histone methylation, are responsible for regulatory pathways that affect disease. Current epigenetic analyses use bisulfite conversion to identify DNA methylation and chromatin immunoprecipitation to collect molecules bearing a specific histone modification. In this work, we present a proof-of-principle(More)
Graphene represents the ultimate substrate for high-resolution transmission electron microscopy, but the deposition of biological samples on this highly hydrophobic material has until now been a challenge. We present a reliable method for depositing ordered arrays of individual elongated DNA molecules on single-layer graphene substrates for high-resolution(More)
Individual chromatin molecules contain valuable genetic and epigenetic information. To date, there have not been reliable techniques available for the controlled stretching and manipulation of individual chromatin fragments for high-resolution imaging and analysis of these molecules. We report the controlled stretching of single chromatin fragments(More)
  • 1