Alina P Tartia

Learn More
Fertilized mouse eggs regulate their size principally by accumulating glycine as an intracellular osmolyte using the GLYT1 (SLC6A9) transporter, a mechanism of cell volume homeostasis apparently unique to early embryos before the morula stage. However, nothing was known of cell volume regulation in oocytes before fertilization. We show here that GLYT1 is(More)
Oocytes grow within ovarian follicles, and only gain the ability to complete meiosis when they are nearly fully grown. We have found that both of the major types of intracellular pH regulatory mechanisms in the mammal-the Na+/H+ and HCO3-/Cl- exchangers-were essentially inactive in mouse oocytes over most of the course of their growth. However, as oocytes(More)
BACKGROUND Preimplantation embryos are particularly susceptible to in vitro developmental blocks. These could be alleviated by lowering culture medium osmolarity. Because mammalian cells regulate their volumes by adjusting intracellular osmotic pressure, cell volume regulation could be critical to early embryos. METHODS We reviewed the literature on cell(More)
Mouse embryos employ a unique mechanism of cell volume regulation in which glycine is imported via the GLYT1 transporter to regulate intracellular osmotic pressure. Independent cell volume regulation normally becomes active in the oocyte after ovulation is triggered. This involves two steps: the first is the release of the strong adhesion between the oocyte(More)
  • 1