Learn More
The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer invasion and metastasis. We here report that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers. Furthermore, we show that(More)
The epithelial-to-mesenchymal transition (EMT) produces cancer cells that are invasive, migratory, and exhibit stem cell characteristics, hallmarks of cells that have the potential to generate metastases. Inducers of the EMT include several transcription factors (TFs), such as Goosecoid, Snail, and Twist, as well as the secreted TGF-beta1. Each of these(More)
The metastatic spread of epithelial cancer cells from the primary tumor to distant organs mimics the cell migrations that occur during embryogenesis. Using gene expression profiling, we have found that the FOXC2 transcription factor, which is involved in specifying mesenchymal cell fate during embryogenesis, is associated with the metastatic capabilities of(More)
Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by(More)
Upon stimulation by pathogen-associated inflammatory signals, TANK-binding kinase 1 (TBK1) induces type I interferon expression and modulates nuclear factor κB (NF-κB) signaling. Here, we describe the 2.4 Å-resolution crystal structure of nearly full-length TBK1 in complex with specific inhibitors. The structure reveals a dimeric assembly created by an(More)
Expression of the oncogenic transcription factor MYC is disproportionately elevated in triple-negative breast cancer (TNBC), as compared to estrogen receptor-, progesterone receptor- or human epidermal growth factor 2 receptor-positive (RP) breast cancer. We and others have shown that MYC alters metabolism during tumorigenesis. However, the role of MYC in(More)
The noncanonical IKK family member IKKepsilon is essential for regulating antiviral signaling pathways and is a recently discovered breast cancer oncoprotein. Although several IKKepsilon targets have been described, direct IKKepsilon substrates necessary for regulating cell transformation have not been identified. Here, we performed a screen for putative(More)
UNLABELLED There is an urgent need in oncology to link molecular aberrations in tumors with therapeutics that can be administered in a personalized fashion. One approach identifies synthetic-lethal genetic interactions or dependencies that cancer cells acquire in the presence of specific mutations. Using engineered isogenic cells, we generated a systematic(More)
Graft-versus-host disease (GVHD) is a common complication of allogeneic bone marrow transplantation (BMT). Upregulation of inflammatory cytokines precedes the clinical presentation of GVHD and predicts its severity. In this report, thiol/redox metabolomics was used to identify metabolic perturbations associated with early preclinical (Day+4) and clinical(More)
mir-17-92, a potent polycistronic oncomir, encodes six mature miRNAs with complex modes of interactions. In the Eμ-myc Burkitt's lymphoma model, mir-17-92 exhibits potent oncogenic activity by repressing c-Myc-induced apoptosis, primarily through its miR-19 components. Surprisingly, mir-17-92 also encodes the miR-92 component that negatively regulates its(More)