Alicia V Grande

Learn More
In this paper, we present a novel finite-difference time-domain model of transient wave propagation in general dispersive bi-isotropic media with losses. The special properties of these materials may lead to new applications in microwave and millimeter-wave technology. While their frequency-domain properties have been well described in the literature, their(More)
The unfolded protein response (UPR) and the Akt signaling pathway share several regulatory functions and have the capacity to determine cell outcome under specific conditions. However, both pathways have largely been studied independently. Here, we asked whether the Akt pathway regulates the UPR. To this end, we used a series of chemical compounds that(More)
Cells make accurate decisions in the face of molecular noise and environmental fluctuations by relying not only on present pathway activity, but also on their memory of past signaling dynamics. Once a decision is made, cellular transitions are often rapid and switch-like due to positive feedback loops in the regulatory network. While positive feedback loops(More)
A transmission-line matrix model suitable to model the propagation of electromagnetic (EM) waves in bi-isotropic media is presented. The main characteristic of the EM response of such complex media is the cross coupling of the EM field vectors in their constitutive relations. In this study, the angle tilt between electric and magnetic field vectors, the(More)
This paper introduces an extension of the original finite-difference time-domain (FDTD) method for modeling double-negative media characterized by high-order frequency-dependent permittivity and permeability. The approach basically consists of adding electric and magnetic current densities to Maxwell's curl equations and considering Ohm's law as a(More)
The original finite-difference time-domain (FDTD) method is extended to incorporate partially magnetized ferrites, which are characterized by a well-known empirical permeability tensor. With the aim of studying the numerical features (stability and accuracy) of the resulting FDTD algorithm, we have considered the propagation of plane-waves along(More)
Exposure to heavy ions during a Mars mission might damage the brain, thus compromising mission success and the quality of life of returning astronauts. Several workers have suggested that the dopamine system is particularly sensitive to heavy ion radiation, but direct evidence for this notion is lacking. We examined measures of brain dopamine viability at(More)
In this paper, a multiresolution in time domain (MRTD) method is used to model the propagation of transient signals through dispersive chiral media. The modeling of these media requires the computation of convolution integrals, whose resolution level may be increased by introducing wavelets in the time dependence of the fields.
  • 1