Alicia Troncoso Lora

Learn More
This paper presents a new approach to forecast the behavior of time series based on similarity of pattern sequences. First, clustering techniques are used with the aim of grouping and labeling the samples from a dataset. Thus, the prediction of a data point is provided as follows. First, the pattern sequence prior to the day to be predicted is extracted.(More)
Earthquakes arrive without previous warning and can destroy a whole city in a few seconds, causing numerous deaths and economical losses. Nowadays, a great effort is being made to develop techniques that forecast these unpredictable natural disasters in order to take precautionary measures. In this paper, clustering techniques are used to obtain patterns(More)
Clustering is used to generate groupings of data from a large dataset, with the intention of representing the behavior of a system as accurately as possible. In this sense, clustering is applied in this work to extract useful information from the electricity price time series. To be precise, two clustering techniques, K-means and Expectation Maxi-mization,(More)
This research presents the mining of quantitative association rules based on evolutionary computation techniques. First, a real-coded genetic algorithm that extends the well-known binary-coded CHC algorithm has been projected to determine the intervals that define the rules without needing to discretize the attributes. The proposed algorithm is evaluated in(More)
An evolutionary approach for finding existing relationships among several variables of a multidimensional time series is presented in this work. The proposed model to discover these relationships is based on quantitative association rules. This algorithm, called QARGA (Quantitative Association Rules by Genetic Algorithm), uses a particular codification of(More)
Evaluating in Massive Open Online Courses (MOOCs) is a difficult task because of the huge number of students involved in the courses. Peer grading is an effective method to cope with this problem, but something must be done to lessen the effect of the subjective evaluation. In this paper we present a matrix factorization approach able to learn from the(More)
BACKGROUND The analysis of data generated by microarray technology is very useful to understand how the genetic information becomes functional gene products. Biclustering algorithms can determine a group of genes which are co-expressed under a set of experimental conditions. Recently, new biclustering methods based on metaheuristics have been proposed. Most(More)
This paper describes a time-series prediction method based on the kNN technique. The proposed methodology is applied to the 24-hour load forecasting problem. Also, based on recorded data, an alternative model is developed by means of a conventional dynamic regression technique, where the parameters are estimated by solving a least squares problem. Finally,(More)