Alicia Moreno-Gonzalez

Learn More
Thin-filament regulation of isometric force redevelopment (k(tr)) was examined in rabbit psoas fibres by substituting native TnC with either cardiac TnC (cTnC), a site I-inactive skeletal TnC mutant (xsTnC), or mixtures of native purified skeletal TnC (sTnC) and a site I- and II-inactive skeletal TnC mutant (xxsTnC). Reconstituted maximal Ca(2+)-activated(More)
A fundamental problem in cancer drug development is that antitumor efficacy in preclinical cancer models does not translate faithfully to patient outcomes. Much of early cancer drug discovery is performed under in vitro conditions in cell-based models that poorly represent actual malignancies. To address this inconsistency, we have developed a technology(More)
Cell transplantation improves cardiac function after myocardial infarction; however, the underlying mechanisms are not well-understood. Therefore, the goals of this study were to determine if neonatal rat cardiomyocytes transplanted into adult rat hearts 1 week after infarction would, after 8-10 weeks: 1) improve global myocardial function, 2) contract in a(More)
We studied the relative contributions of Ca(2+) binding to troponin C (TnC) and myosin binding to actin in activating thin filaments of rabbit psoas fibres. The ability of Ca(2+) to activate thin filaments was reduced by replacing native TnC with cardiac TnC (cTnC) or a site I-inactive skeletal TnC mutant (xsTnC). Acto-myosin (crossbridge) interaction was(More)
PURPOSE To facilitate decision making in the oncology clinic, technologies have recently been developed to independently inject and assess multiple anticancer agents directly in a patient's tumor. To increase the flexibility of this approach beyond histological readouts of response, contrast-enhanced MRI was evaluated for the detection of cell death in(More)
The vision of a precision medicine-guided approach to novel cancer drug development is challenged by high intratumor heterogeneity and interpatient diversity. This complexity is rarely modeled accurately during preclinical drug development, hampering predictions of clinical drug efficacy. To address this issue, we developed Comparative In Vivo Oncology(More)
The tensional effects of intravenous and intracisternal chlorpromazine were studied in neurogenic hypertensive dogs by desinhibition and bilateral vagotomy. Intravenous (2-5 mg/kg) chlorpromazine corrected instantaneously the rise in blood pressure after desinhibition, but was inactive on tachycardia. Intracisternal (0.5-2 mg/kg) chlorpromazine was always(More)