Learn More
This paper addresses the problems of word spotting and word recognition on images. In word spotting, the goal is to find all instances of a query word in a dataset of images. In recognition, the goal is to recognize the content of the word image, usually aided by a dictionary or lexicon. We describe an approach in which both word images and text strings are(More)
—In the last years, there has been a growing interest in the analysis of handwritten music scores. In this sense, our goal has been to foster the interest in the analysis of handwritten music scores by the proposal of two different competitions: Staff removal and Writer Identification. Both competitions have been tested on the CVC-MUSCIMA database: a(More)
The analysis of music scores has been an active research field in the last decades. However, there are no publicly available databases of handwritten music scores for the research community. In this paper, we present the CVC-MUSCIMA database and ground truth of handwritten music score images. The dataset consists of 1,000 music sheets written by 50(More)
In this paper, we propose a circular blurred shape model descriptor to deal with the problem of symbol detection and classification as a particular case of object recognition. The feature extraction is performed by capturing the spatial arrangement of significant object characteristics in a correlogram structure. The shape information from objects is shared(More)
We propose an approach to multi-writer word spotting, where the goal is to find a query word in a dataset comprised of document images. We propose an attributes-based approach that leads to a low-dimensional, fixed-length representation of the word images that is fast to compute and, especially, fast to compare. This approach naturally leads to an unified(More)
In this paper we propose an unsupervised segmentation-free method for word spotting in document images. Documents are represented with a grid of HOG descriptors, and a sliding-window approach is used to locate the document regions that are most similar to the query. We use the Exemplar SVM framework to produce a better representation of the query in an(More)
A growing interest in the document analysis field is the recognition of old handwritten documents, towards the conversion into a readable format. The difficulties when working with old documents are increased , and other techniques are required for recognizing handwritten graphical symbols that are drawn in such these documents. In this paper we present a(More)
One of the major difficulties of handwriting symbol recognition is the high variability among symbols because of the different writer styles. In this paper, we introduce a robust approach for describing and recognizing hand-drawn symbols tolerant to these writer style differences. This method, which is invariant to scale and rotation, is based on the(More)