Alicia C Lee

Learn More
At close hand to one's genomic material are the histones that make up the nucleosome. Standing guard, one variant stays hidden doubling as one of the core histones. But, thanks to its prime positioning, a variation in the tail of H2AX enables rapid modification of the histone code in response to DNA damage. A role for H2AX phosphorylation has been(More)
Histone H2AX is rapidly phosphorylated in the chromatin micro-environment surrounding a DNA double-strand break (DSB). Although H2AX deficiency is not detrimental to life, H2AX is required for the accumulation of numerous essential proteins into irradiation induced foci (IRIF). However, the relationship between IRIF formation, H2AX phosphorylation (γ-H2AX)(More)
Human diploid fibroblasts eventually lose the capacity to replicate in culture and enter a viable but nonproliferative state of senescence. Recently, it has been demonstrated that retroviral-mediated gene transfer into primary fibroblasts of an activated ras gene (V12ras) rapidly accelerates development of the senescent phenotype. Using this in vitro(More)
The gp160 human kidney differentiation antigen is identical to human aminopeptidase A (APA), a zinc-dependent cell-surface metallopeptidase which hydrolyzes peptides with N-terminal acidic residues. GP160/APA is constitutively expressed by proximal tubule cells, the normal cellular counterpart of most renal cancers (RCs). Immunohistochemical analysis of(More)
Human MDC1/NFBD1 has been found to interact with key players of the DNA-damage response machinery. Here, we identify and describe a functional homologue of MDC1/ NFBD1 in Mus musculus. The mouse homologue, mMDC1, retains the key motifs identified in the human protein and in response to ionizing radiation forms foci that co-localize with the MRE11-RAD50-NBS1(More)
  • 1