Alicia A. McDonough

Learn More
An increase in cell size and protein content is characteristic of cells undergoing hypertrophy and of replicating cells prior to DNA synthesis. Cell enlargement in the two situations could be regulated by similar early events with an interruption of the cell cycle occurring in hypertrophy, or the two processes could be uncoupled. In vivo models were used to(More)
Efficient oxygen utilization in the kidney may be supported by paracellular epithelial transport, a form of passive diffusion that is driven by preexisting transepithelial electrochemical gradients. Claudins are tight-junction transmembrane proteins that act as paracellular ion channels in epithelial cells. In the proximal tubule (PT) of the kidney,(More)
The sodium pump Na,K-ATPase, located in the plasma membrane of all animal cells, is a member of a family of ion-translocating ATPases that share highly homologous catalytic subunits. In this family, only Na,K-ATPase has been established to be a heterodimer of catalytic (alpha) and glycoprotein (beta) subunits. The beta subunit has not been associated with(More)
One-hundred years ago, Starling articulated the interdependence of renal control of circulating blood volume and effective cardiac performance. During the past 25 years, the molecular mechanisms responsible for the interdependence of blood pressure (BP), extracellular fluid volume (ECFV), the renin-angiotensin system (RAS), and sympathetic nervous system(More)
Humans are intermittently exposed to large variations in potassium intake, which range from periods of fasting to ingestion of potassium-rich meals. These fluctuations would abruptly alter plasma potassium concentration if not for rapid mechanisms, primarily in skeletal muscle and the liver, that buffer the changes in plasma potassium concentration by means(More)
During potassium deprivation, skeletal muscle loses K+ to buffer the fall in extracellular K+. Decreased active K+ uptake via the sodium pump, Na,K-ATPase, contributes to the adjustment. Skeletal muscle expresses alpha1, alpha2, beta1, and beta2 isoforms of the Na, K-ATPase alphabeta heterodimer. This study was directed at testing the hypothesis that K+(More)
AMP-activated protein kinase (AMPK), activated by an increase in intracellular AMP-to-ATP ratio, stimulates pathways that can restore ATP levels. We tested the hypothesis that AMPK activation influences extracellular fluid (ECF) K(+) homeostasis. In conscious rats, AMPK was activated with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR)(More)
Urea transporters have been cloned from kidney medulla (UT-A) and erythrocytes (UT-B). We determined whether UT-A proteins could be detected in heart and whether their abundance was altered by uremia or hypertension or in human heart failure. In normal rat heart, bands were detected at 56, 51, and 39 kDa. In uremic rats, the abundance of the 56-kDa protein(More)
Recent subcellular fractionation studies have raised the possibility that Na+-K+-ATPase might be present in both the apical and the basal-lateral membranes of exocrine gland acinar cells. Analytical fractionation and immunofluorescence microscopy studies of rat parotid glands were performed to confirm this interpretation. The distributions of biochemical(More)
Hypertension affects more than 1.5 billion people worldwide but the precise cause of elevated blood pressure (BP) cannot be determined in most affected individuals. Nonetheless, blockade of the renin-angiotensin system (RAS) lowers BP in the majority of patients with hypertension. Despite its apparent role in hypertension pathogenesis, the key cellular(More)