Learn More
— We apply results from algebraic coding theory to solve problems in cryptography, by using recent results on list decoding of error-correcting codes to efficiently find traitors who collude to create pirates. We produce schemes for which the TA (traceability) traitor tracing algorithm is very fast. We compare the TA and IPP (identifiable parent property)(More)
We study the problem of finding efficiently computable non-degenerate multilinear maps from G n 1 to G 2 , where G 1 and G 2 are groups of the same prime order, and where computing discrete logarithms in G 1 is hard. We present several applications to cryptography, explore directions for building such maps, and give some reasons to believe that finding(More)
We introduce the concept of torus-based cryptography, give a new public key system called CEILIDH, and compare it to other discrete log based systems including Lucas-based systems and XTR. Like those systems, we obtain small key sizes. While Lucas-based systems and XTR are essentially restricted to exponentiation, we are able to perform multiplication as(More)
We apply powerful, recently discovered techniques for the list decoding of error-correcting codes to the problem of efficiently tracing traitors. Much work has focused on methods for constructing such traceability schemes, but the complexity of the traitor tracing algorithms has received little attention. A widely used traitor tracing algorithm, the TA(More)
We give easy ways to distinguish between the twists of an ordinary elliptic curve E over Fp in order to identify one with p + 1 − 2U points, when p = U 2 + dV 2 with 2U, 2V ∈ Z and E is constructed using the CM method. This is useful for finding elliptic curves with a prescribed number of points, and is a new, faster, and easier way to implement the last(More)
We give explicit examples of infinite families of elliptic curves E over Q with (nonconstant) quadratic twists over Q(t) of rank at least 2 and 3. We recover some results announced by Mestre, as well as some additional families. Suppose D is a squarefree integer and let r E (D) denote the rank of the quadratic twist of E by D. We apply results of Stewart(More)
We give a deterministic algorithm that very quickly proves the pri-mality or compositeness of the integers N in a certain sequence, using an ellip-tic curve E/Q with complex multiplication by the ring of integers of Q(√ −7). The algorithm uses O(log N) arithmetic operations in the ring Z/N Z, implying a bit complexity that is quasi-quadratic in log N.(More)