Alice Huertas

Learn More
Circulating CD34+ cells are haemopoietic progenitors that may play a role in tissue repair. No data are available on circulating progenitors in chronic obstructive pulmonary disease (COPD). Circulating CD34+ cells were studied in 18 patients with moderate-to-severe COPD (age: mean+/-sd 68+/-8 yrs; forced expiratory volume in one second: 48+/-12% predicted)(More)
Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling of the precapillary pulmonary arteries, with excessive proliferation of vascular cells. Although the exact pathophysiology remains unknown, there is increasing evidence to suggest an important role for inflammation. Firstly, pathologic specimens from patients with PAH(More)
RATIONALE C-kit(+) cells, including bone marrow (BM)-derived progenitors and mast cells, may participate in vascular remodelling. Because recent studies suggest that c-kit may be a target for innovative therapies in experimental pulmonary hypertension, we investigated the contribution of c-kit(+) cells in human idiopathic pulmonary arterial hypertension(More)
Chronic obstructive pulmonary disease (COPD) patients have reduced circulating hemopoietic progenitors. We hypothesized that severity of COPD parallels the decrease in progenitors and that the reduction in body mass index (BMI) could be associated with more severe bone marrow dysfunction. We studied 39 patients with moderate to very severe COPD (18 with(More)
The effects of endurance or maximal exercise on mobilization of bone marrow-derived hemopoietic and angiogenetic progenitors in healthy subjects are poorly defined. In 10 healthy amateur runners, we collected venous blood before, at the end of, and the day after a marathon race (n = 9), and before and at the end of a 1.5-km field test (n = 8), and measured(More)
Pulmonary arterial hypertension (PAH) is a disorder in which mechanical obstruction of the pulmonary vascular bed is largely responsible for the rise in mean pulmonary arterial pressure, resulting in a progressive functional decline despite current available therapeutic options. The fundamental pathogenetic mechanisms underlying this disorder include(More)
Immune mechanisms and autoimmunity seem to play a significant role in idiopathic pulmonary arterial hypertension (IPAH) pathogenesis and/or progression, but the pathophysiology is still unclear. Recent evidence has demonstrated a detrimental involvement of leptin in promoting various autoimmune diseases by controlling regulatory T-lymphocytes. Despite this(More)
Pulmonary arterial hypertension (PAH) is a life-threatening disease that can be induced by dasatinib, a dual Src and BCR-ABL tyrosine kinase inhibitor that is used to treat chronic myelogenous leukemia (CML). Today, key questions remain regarding the mechanisms involved in the long-term development of dasatinib-induced PAH. Here, we demonstrated that(More)
BACKGROUND Pericytes and their crosstalk with endothelial cells are critical for the development of a functional microvasculature and vascular remodeling. It is also known that pulmonary endothelial dysfunction is intertwined with the initiation and progression of pulmonary arterial hypertension (PAH). We hypothesized that pulmonary endothelial dysfunction,(More)
Shedding of the extracellular domain of cytokine receptors allows the diffusion of soluble receptors into the extracellular space; these then bind and neutralize their cytokine ligands, thus dampening inflammatory responses. The molecular mechanisms that control this process, and the extent to which shedding regulates cytokine-induced microvascular(More)