Alican Bozkurt

Learn More
The need to integrate massively increasing amounts of data on the mammalian brain has driven several ambitious neuroscientific database projects that were started during the last decade. Databasing the brain's anatomical connectivity as delivered by tracing studies is of particular importance as these data characterize fundamental structural constraints of(More)
PURPOSE We developed and evaluated the performance of a novel computer-based image analysis system for grading plus disease in retinopathy of prematurity (ROP), and identified the image features, shapes, and sizes that best correlate with expert diagnosis. METHODS A dataset of 77 wide-angle retinal images from infants screened for ROP was collected. A(More)
IMPORTANCE Published definitions of plus disease in retinopathy of prematurity (ROP) reference arterial tortuosity and venous dilation within the posterior pole based on a standard published photograph. One possible explanation for limited interexpert reliability for a diagnosis of plus disease is that experts deviate from the published definitions. (More)
Summary form only given. A new optimization technique based on the projections onto convex space (POCS) framework for solving convex and some non-convex optimization problems are presented. The dimension of the minimization problem is lifted by one and sets corresponding to the cost function are defined. If the cost function is a convex function in(More)
Recognizing fonts has become an important task in document analysis, due to the increasing number of available digital documents in different fonts and emphases. A generic font-recognition system independent of language, script and content is desirable for processing various types of documents. At the same time, categorizing calligraphy styles in(More)
In this article, a multiplication-free artificial Neural Network (ANN) structure is proposed. Inner products between the input vectors and the ANN weights are implemented using a multiplication-free vector operator. Training of the new artificial neural network structure is carried out using the sign-LMS algorithm. Proposed ANN system can be used in(More)
A new deconvolution algorithm based on making orthogonal projections onto the epigraph set of a convex cost function is presented. In this algorithm, the dimension of the minimization problem is lifted by one and sets corresponding to the cost function and observations are defined. If the utilized cost function is convex in R<sup>N</sup>, the corresponding(More)
The cosine similarity measure is widely used in big data analysis to compare vectors. In this article a new set of vector similarity measures are proposed. New vector similarity measures are based on a multiplication-free operator which requires only additions and sign operations. A vector `product' using the multiplication-free operator is also defined.(More)
Reflectance confocal microscopy (RCM) is an effective, non-invasive pre-screening tool for cancer diagnosis. However, acquiring and reading RCM images requires extensive training and experience, and novice clinicians exhibit high variance in diagnostic accuracy. Consequently, there is a compelling need for quantitative tools to standardize image acquisition(More)
In many radar problems it is not necessary to compute the ambiguity function in a perfect manner. In this article a new multiplication free algorithm for approximate computation of the ambiguity function is introduced. All multiplications (a &#x00D7; b) in the ambiguity function are replaced by an operator which computes sign(a &#x00D7; b)(|a| + |b|). The(More)