Learn More
Visual tracking has attracted a significant attention in the last few decades. The recent surge in the number of publications on tracking-related problems have made it almost impossible to follow the developments in the field. One of the reasons is that there is a lack of commonly accepted annotated data-sets and standardized evaluation protocols that would(More)
In real world social networks, there are multiple diffusion processes which are rarely independent. They usually interact with each other in a competitive or cooperative manner. In this paper, motivated by the reinforcement theory in sociology , we model the adoption behavior of users in social networks by a multivariate marked Hawkes process. According to(More)
This paper presents a robust tracking approach to handle challenges such as occlusion and appearance change. Here, the target is partitioned into a number of patches. Then, the appearance of each patch is modeled using a dictionary composed of corresponding target patches in previous frames. In each frame, the target is found among a set of candidates(More)
Users in social networks whose posts stay at the top of their followers' feeds the longest time are more likely to be noticed. Can we design an online algorithm to help them decide when to post to stay at the top? In this paper, we address this question as a novel optimal control problem for jump stochastic differential equations. For a wide variety of feed(More)
Social networks are getting closer to our real physical world. People share the exact location and time of their check-ins and are influenced by their friends. Modeling the spatio-temporal behavior of users in social networks is of great importance for predicting the future behavior of users, controlling the users' movements, and finding the latent(More)
  • 1