Learn More
Global demethylation is part of a conserved program of epigenetic reprogramming to naive pluripotency. The transition from primed hypermethylated embryonic stem cells (ESCs) to naive hypomethylated ones (serum-to-2i) is a valuable model system for epigenetic reprogramming. We present a mathematical model, which accurately predicts global DNA demethylation(More)
Networks are employed to represent many nonlinear complex systems in the real world. The topological aspects and relationships between the structure and function of biological networks have been widely studied in the past few decades. However dynamic and control features of complex networks have not been widely researched, in comparison to topological(More)
MiRNAs play an essential role in the networks of gene regulation by inhibiting the translation of target mRNAs. Several computational approaches have been proposed for the prediction of miRNA target-genes. Reports reveal a large fraction of under-predicted or falsely predicted target genes. Thus, there is an imperative need to develop a computational method(More)
The Warburg effect means higher glucose uptake of cancer cells compared to normal tissues, whereas a smaller fraction of this glucose is employed for oxidative phosphorylation. With the advent of high throughput technologies and computational systems biology, cancer cell metabolism has been reinvestigated over the last decades toward identifying various(More)
Network motifs are small connected sub-graphs that have recently gathered much attention to discover structural behaviors of large and complex networks. Finding motifs with any size is one of the most important problems in complex and large networks. It needs fast and reliable algorithms and tools for achieving this purpose. CytoKavosh is one of the best(More)
The ability to analyze and compare protein-nucleic acid and protein-protein interaction interface has critical importance in understanding the biological function and essential processes occurring in the cells. Since high-resolution three-dimensional (3D) structures of biomacromolecule complexes are available, computational characterizing of the interface(More)
The main characteristic of biological networks is scale freeness which is distinguished by the power-law degree distribution of the edges per node. Hubs play a central role in different biological process. In this study we compared hub and non-hub proteins in Saccharomyces cere visiae protein-protein interaction network by their size, primary and secondary(More)
Neoplastic disorders are a leading cause of mortality and morbidity worldwide. Studying the relationships between different cancers using high throughput-generated data may elucidate undisclosed aspects of cancer etiology, diagnosis, and treatment. Several studies have described relationships between different diseases based on genes, proteins, pathways,(More)
Background: Acute promyelocytic leukemia (APL) is a unique subtype of acute leukemia. APL is a curable disease; however, drug resistance, early mortality, disease relapse and treatment-related complications remain challenges in APL patient management. One issue underlying these challenges is that the molecular mechanisms of the disease are not sufficiently(More)
Metaboloepigenetics is a newly coined term in biological sciences that investigates the crosstalk between epigenetic modifications and metabolism. The reciprocal relation between biochemical transformations and gene expression regulation has been experimentally demonstrated in cancers and metabolic syndromes. In this study, we explored the(More)