Learn More
Nanostructures have attracted a great deal of attention because of their potential usefulness for high density applications. More importantly, they offer excellent avenues for improved scaling beyond conventional approaches. Less attention has been paid to their intrinsic potential for distinct circuit applications. Here we discuss how a combination of 1-D(More)
Our experiments show that linearity can be achieved if transistors are designed to operate in the one-dimensional ballistic transport regime in the quantum capacitance limit. We report third order intercept points (IIP3) of around −13dBm at maximum transconductance under these particular transport and device operation conditions, meeting the(More)
The impact of channel material and dimensionality on the linearity of nanowire transistors is studied theoretically. This paper also evaluates various scattering mechanisms in this context. While operating under 1-D transport conditions in the quantum capacitance limit, the achievable device linearity strongly depends on the details of the scattering(More)
Neurotransmitter release in chemical synapses is fundamental to diverse brain functions such as motor action, learning, cognition, emotion, perception, and consciousness. Moreover, improper functioning or abnormal release of neurotransmitter is associated with numerous neurological disorders such as epilepsy, sclerosis, schizophrenia, Alzheimer's disease,(More)
The effect of diameter variation on electrical characteristics of long-channel InAs nanowire metal-oxide-semiconductor field-effect transistors is experimentally investigated. For a range of nanowire diameters, in which significant band gap changes are observed due to size quantization, the Schottky barrier heights between source/drain metal contacts and(More)
Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale(More)
  • 1